celloracle
Release 0.8.4

Samantha Morris Lab

Dec 31, 2021

CONTENTS

1 News 3
2 Contents 5
2.1 Installation e e e e e e e e 5
2.2 Tutorial e e e e e e e e e 10
23 APL . . e 117
24 Changelog o o e e e e e 141
2.5 LICENSE . . v v o e e e e 144
2.6 Authorsand CItationsS o e e e e e e e e e e e e 146
2.7 Contact e e e e e e e e e e 146
3 Indices and tables 149
Python Module Index 151
Index 153

celloracle, Release 0.8.4

CellOracle is a python library for the in silico gene perturbation analysis using single-cell omics data and Gene Regu-
latory Network models.

Source code is available at celloracle GitHub repository

For more information, please read our bioarxiv preprint: CellOracle: Dissecting cell identity via network inference
and in silico gene perturbation

Note:
Documentation is also available as a pdf file.

pdf documentation

Warning: CellOracle is still under development. It is a beta version. Functions in this package may change in the
future release.

CONTENTS 1

https://github.com/morris-lab/CellOracle
https://www.biorxiv.org/content/10.1101/2020.02.17.947416v3
https://www.biorxiv.org/content/10.1101/2020.02.17.947416v3

celloracle, Release 0.8.4

2 CONTENTS

CHAPTER
ONE

NEWS

Please look Changelog page for all updates history of CellOracle package.
* 12/29/2021: Add Guinea Pig TSS data for scATAC-seq data analysis.

e 8/28/2021: We updated installation page.

* 7/16/2021: We overhauled our documentation and tutorial codes. Please re-download tutorial notebooks if you
have old one. Also, we are updating CellOracle frequently. Please install the latest version of CellOracle if you

have an old version.

https://morris-lab.github.io/CellOracle.documentation/changelog/index.html

celloracle, Release 0.8.4

4 Chapter 1. News

CHAPTER
TWO

CONTENTS

2.1 Installation

CellOracle uses several python libraries and R libraries. Please follow this guide below to install CellOracle and its
dependent software.

2.1.1 Docker image

* Pre-built docker image is available through Docker Hub .

docker pull kenjikamimotol26/celloracle_ubuntu

* This docker image was built based on Ubuntu 20.04.

» Python dependent packages and celloracle are installed under an anaconda environment, celloracle_env. This
environment will be activated automatically when you log in.

* R dependent libraries for network analysis are installed. Also, Seurat V3, Monocle3, and Cicero are installed.

» After logging in, the user switches from the root user to the following user. Username: user. Password: pass.

2.1.2 Install CellOracle

System Requirements
¢ Operating system: macOS or Linux are highly recommended. CellOraclewas developed and tested in Linux and
macOS.

* We found that the celloracle calculation may be EXTREMELY SLOW under an environment of Windows
Subsystem for Linux (WSL). We do not recommend using WSL.

¢ While you can install CellOracle in Windows OS, please do so at your own risk and responsibility. We DO NOT
provide any support for the use in the Windows OS.

e Memory: 16 G byte or more. Memory usage also depends on your data. Especially in silico perturbation
requires large amount of memory.

¢ CPU: Core i5 or better processor. GRN inference supports multicore calculation. Higher number of CPU cores
enables fast calculation.

https://hub.docker.com/repository/docker/kenjikamimoto126/celloracle_ubuntu

celloracle, Release 0.8.4

Python Requirements

* CellOracle was developed with python 3.6. We do not support python 2.7x or python <=3.5.
¢ Please install all dependent libraries before installing CellOracle according to the instructions below.

¢ CellOracle is still a beta version and it is not available through PyPI or anaconda distribution yet. Please install
CellOracle from our GitHub repository according to the instruction below.

CellOracle installation using conda and pip

1. Make a conda environment We recommend installing CellOracle in an independent conda environment to avoid
dependent software conflicts. Please make a new python environment for celloracle and install dependent li-
braries in it.

conda create —n celloracle_env python=3.6
conda activate celloracle_env

Installation of some libraries requires non-default anaconda channels. Please add the channels below. Instead,
you can explicitly enter the channel when you install a library.

conda config —-—-add channels defaults
conda config —--add channels bioconda
conda config --add channels conda-forge

2. Install dependencies using conda

Run the following command to install some dependencies prior to celloracle installation.

conda install numba cython pybedtools jupyter notebook ‘

3. Install CellOracle and other dependencies

’pip install git+https://github.com/morris—lab/CellOracle.git ‘

You may have an error in the installation process of CellOracle dependent libraries. If you have an error, please look
at the troubleshooting page.

Python dependent library installation troubleshooting
Install velocyto

If you failed CellOracle installation because of velocyto installation error, please try to install velocyto with the fol-
lowing commands or the author’s instruction .

conda install numpy scipy cython numba matplotlib scikit-learn hbSpy click pysam 1llvm
—louvain

Then

pip install velocyto

It was reported that some compile errors might occur during the installation of velocyto on MacOS. Various errors
were reported, and you need to find the best solution depending on your error. You may find the solution with these
links below.

6 Chapter 2. Contents

http://velocyto.org/velocyto.py/install/index.html

celloracle, Release 0.8.4

* Solution 1: Install Xcode. Please try this first.

 Solution 2: Install macOS_SDK_headers. This solution is needed in addition to Solution-1 if your OS is macOS
Mojave.

 Solution 3. This is the solution reported by a CellOracle user. Thank you very much!

* Other solutions on Velocyto GitHub issue page

Install scanpy

If you failed CellOracle installation because of scanpy installation error, please try to install scanpy with the following
commands or the author’s instruction .

conda install scanpy

Install other python libraries

Please install other python libraries below using conda prior to celloracle installation. It might solve some installation
errors.

conda install pybedtools pyarrow tgdm joblib jupyter gimmemotifs==0.14.4 genomepy==0.
‘—>8-4

Install celloracle

After installing the dependent libraries above, please install CellOracle again.

pip install git+https://github.com/morris—lab/CellOracle.git

If you get error related to “certifi”

If you get the following error, it means the error is caused by versiom mismatch of “certifi”’. See this page. for more
information.

ERROR: Cannot uninstall 'certifi'. It is a distutils installed project and thus we
—cannot accurately determine which files belong to it which would lead to only a
—partial uninstall.

In this case, please add “—ignore-installed certifi ” to the installation command.

pip install git+https://github.com/morris—lab/CellOracle.git -—-ignore-installed
—certifi

2.1. Installation 7

https://developer.apple.com/xcode/
https://stackoverflow.com/a/53057706/10641716
https://github.com/morris-lab/CellOracle/issues/3
https://github.com/velocyto-team/velocyto.py/issues?q=
https://scanpy.readthedocs.io/en/stable/installation.html
https://stackoverflow.com/questions/50129762/graphlab-create-2-1-installation-fails-to-uninstall-certifi-a-distutils-insta

celloracle, Release 0.8.4

R requirements

CellOracle uses R libraries to calculate network graph score. Please install R (>=3.5) and R libraries below.

Note: These R libraries are needed for network analysis. CellOracle gene perturbation simulation does not require
the R libraries. You can skip R library installation if you do not perform network analysis.

install.packages ("igraph")
install.packages ("rnetcarto")
install.packages ("linkcomm")

If you have an error when installing these R libraries above, please look at the troubleshooting tips below.

R dependent library installation troubleshooting
igraph

Please install 1igraph with the following r-script or the author’s instruction .

In R console,

install.packages ("igraph")

If you get an error during installation, please check compilers. This GitHub issue page is helpful.

linkcomm

Please install 1 inkcomm with the following r-script or the author’s instruction .

In R console,

install.packages ("linkcomm™)

rnetcarto

Please install rnetcarto with the following r-script or the author’s instruction .

scientific libraries .

If you use ubuntu, you can install the GNU scientific libraries as follows.

rnetcarto requires the GNU

’sudo apt—-get install libgsl-dev

In R console,

install.packages ("rnetcarto")

Chapter 2. Contents

https://www.r-project.org
https://igraph.org/r/
https://github.com/igraph/rigraph/issues/275
https://cran.r-project.org/web/packages/linkcomm/index.html
https://github.com/cran/rnetcarto/blob/master/src/rgraph/README.md
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/

celloracle, Release 0.8.4

Check installation

Check python library installation status

You can check the installed library version as follows.

In python console,

import celloracle as co
co.check_python_requirements ()

Check R library installation status

Please make sure that all R libraries are installed using the following function.

import celloracle as co
co.test_R_libraries_installation ()

The following message will be shown when all R libraries are appropriately installed.

R path: /usr/lib/R/bin/R

checking R library installation: igraph -> OK
checking R library installation: linkcomm -> OK
checking R library installation: rnetcarto -> OK

The first line above is your R path. If you want to use another R program installed at a different place, please set a new
R path with the following command.

co.network_analysis.set_R _path ("ENTER YOUR R PATH HERE")

Optional R libraries for input data preparation

We provide many working examples for input data preparation. These R packages below are not in the part of the
CellOracle library itself and not necessary. However you can use them in the input data preparation step if you want.
Please install them on demand. If you want to try CellOracle main tutorials, networkanalysis and simulation, you DO
NOT need to install the libraries below.

¢ Seurat

¢ Cicero

2.1. Installation 9

https://satijalab.org/seurat/install.html
https://cole-trapnell-lab.github.io/cicero-release/docs/#installing-cicero

celloracle, Release 0.8.4

2.2 Tutorial

This tutorial aims to introduce how to use CellOracle functions using the demo dataset. Once you get used to CellOr-
acle codes, please replace demo data with your data to investigate it.

2.2.1 What the tutorial covers
1. Main celloracle analysis

* GRN model construction and Network analysis: This notebook introduces how to construct sample-specific
GRN models. It also contains examples of network analysis with graph theory.

e insilico gene perturbation with GRNs : This notebook performs in silico gene perturbation analysis using GRN
models.

Note: Demo dataset is available in the tutorial notebooks above. You can try CellOracle even if you do not have any
data.

2. How to prepare input data

We recommend getting started with CellOracle using demo dataset. Please get used to CellOracle analysis with them
first. When you want to apply CellOracle to your scRNA-seq or scATAC dataset, please refer to the following tutorials
to know how to prepare input data.

* scRNA-seq data preparation: This notebook explains preprocessing steps for scRNA-seq data.
* Base GRN input data preparation: This tutorial explains how to prepare input data for TF motif scan.

* Transcription factor binding motif scan: This tutorial describes the TF motif scan pipeline for base-GRN con-
struction.

Warning: In the input data preparation, we introduce how to prepare input data using some other libraries. But
the input data preparation notebook is NOT CellOracle analysis itself, and we just provide an example how to
leverage pre-existing tools to prepare input data. CellOracle is not a pipeline for scRNA-seq / scATAC-seq data
preprocessing.

2.2.2 Prerequisites

* This tutorial assumes that you have adequate Python programming experience. In particular, we assume you
are familiar with Python data science libraries: jupyter, pandas, and matplotlib.

¢ Also, this tutorial assume that you are familiar with basic scRNA-seq data analysis. In particular, we assume you
have some experience of scRNA-seq analysis using Scanpy and Anndata , which is a python toolkit for single-
cell analysis. You can use scRNA-seq data processed with Seurat . But the Seurat data need to be converted into
Anndata format in advance to CellOracle analysis. See this page for detail.

¢ CellOracle provides pre-build base-GRN, and it is not necessary to construct custom base-GRN. But if you want
to construct custom base-GRN from your scATAC-seq data, we recommend using Cicero.In this case, please
get used to Cicero, basic scATAC-seq data analysis, and TF motif analysis in advance to start constructing
base-GRN.

10 Chapter 2. Contents

https://scanpy.readthedocs.io/en/stable/
https://satijalab.org/seurat/
https://morris-lab.github.io/CellOracle.documentation/modules/index.html#command-line-api
https://cole-trapnell-lab.github.io/cicero-release/

celloracle, Release 0.8.4

¢ CellOracle is a python package. For the installation of CellOracle, we recommend using Anaconda , If you are
not familiar with Anaconda or python environment management, please use our pre-built docker image.

2.2.3 Code and data availability

* We provide link for the notebook in each section.
* You can download demo input data using the notebooks.

* We provide intermediate files. You can start at any section.

2.2.4 Getting started
If you run CellOracle for the first time, please start with the GRN model construction and Network analysis. And then,

please proceed to in silico gene perturbation with GRNs. We provide demo scRNA-seq dataset and base-GRN data as
follows. You can load these data using the CellOracle data loading function.

* scRNA-seq data: Hematopoiesis dataset published by Paul et al (2015) .
* Base-GRN: Base-GRN generated from Mouse sci-ATAC-seq atlas dataset .

You can easily start CellOracle analysis with this dataset. You can reproduce hematopoiesis network analysis and
perturbation simulation results that are shown in our bioarxiv preprint .

2.2.5 Index

GRN model construction and Network analysis

GRN model construction and Network analysis

Please download notebooks from here . Or please click below to view the content.

Overview

This notebook describes how to construct GRN models. Please read our paper first to know about the CellOracle
algorithm.

Notebook file

Notebook file is available at CellOracle GitHub. https://github.com/morris-lab/CellOracle/blob/master/docs/
notebooks/04_Network_analysis/Network_analysis_with_Paul_etal_2015_data.ipynb

2.2. Tutorial 11

https://anaconda.org
https://morris-lab.github.io/CellOracle.documentation/installation/index.html#docker-image
https://www.sciencedirect.com/science/article/pii/S0092867415014932?via%3Dihub
https://atlas.gs.washington.edu/mouse-atac/
https://www.biorxiv.org/content/10.1101/2020.02.17.947416v3
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/04_Network_analysis/Network_analysis_with_Paul_etal_2015_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/04_Network_analysis/Network_analysis_with_Paul_etal_2015_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/04_Network_analysis/Network_analysis_with_Paul_etal_2015_data.ipynb

celloracle, Release 0.8.4

Data

CellOracle uses two input data below for the GRN model construction.

Input datal: scRNA-seq data. Please look at the previous section to know the scRNA-seq data preprocessing
method. https://morris-lab.github.io/CellOracle.documentation/tutorials/scrnaprocess.html

Input data2: Base-GRN. Base-GRN is a binary matrix (or list) that represents the TF-target gene connection.
Please look at our paper to know the concept of base-GRN.

CellOracle typically uses base-GRN constructed from scATAC-seq. If you want to create custom base-GRN
from your data, please look at another notebook on how to get base-GRN from your scATAC-seq data. https:
/Imorris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html

If you do not have any scATAC-seq data that correspond / similar to the cell type of the scRNA-seq data, please
use pre-built base-GRN.

We provide multiple options for pre-built base-GRN. For mouse analysis, we recommend using base-GRN
constructed from the mouse sciATAC-seq atlas dataset. It includes various tissue and various cell types. Another
option is base-GRN constructed from promoter sequence. We provide promoter base-GRN for ten species.

What you can do

After constructing the CellOracle GRN model, you can do two analyses.

1.

2.

in silico TF perturbation to simulate cell identity shift. CellOracle uses the GRN model to simulate cell identity
shift in response to TF perturbation. For this analysis, you need to construct GRN models in this notebook first.

Network analysis using graph theory. You can analyze the GRN model itself. We provide several functions for
Network analysis using graph theory.

CellOracle construct cluster-wise GRN model. You can compare the GRN model structure between clusters.
By comparing GRN models, you can investigate the cell type-specific GRN configuration and rewiring process
of this GRN.

You can export the network models. You can analyze the GRN model using any method you like.

Custom data class / object

In this notebook, CellOracle uses two custom classes, Oracle and Links.

A

Oracle is the main class in the CellOracle package. It will do almost all calculations of GRN model construc-
tion and TF perturbation simulation. Oracle will do the following calculation sequentially.

Import scRNA-sequence data. Please look at another notebook to learn preprocessing method.
Import base-GRN data.

scRNA-seq data processing.

GRN model construction.

in silico petrurbation. We will describe how to do it in the following notebook.

Links is a class to store GRN data. Also, it has many functions for network analysis and visualization.

12

Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/scrnaprocess.html
https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html
https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html

[1]:

celloracle, Release 0.8.4

0. Import libraries

0. Import

import os
import sys

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import scanpy as sc

import seaborn as sns

import celloracle as co
co.__version

'0.6.17"

visualization settings
$config InlineBackend.figure_format = 'retina'
smatplotlib inline

plt.rcParams|['figure.figsize'] = [6, 4.5]
plt.rcParams|["savefig.dpi"] = 300

Celloracle uses some R libraries in network analysis. Please make sure that all dependent R libraries are installed on
your computer. You can test the installation with the following command.

co.test_R libraries_installation ()

R path: /usr/bin/R

checking R library installation: igraph -> OK
checking R library installation: linkcomm -> OK
checking R library installation: rnetcarto -> OK

save_folder = "figures"
os.makedirs (save_folder, exist_ok=True)

1. Load data

Please refer to the previous notebook in the tutorial for an example of how to process scRNA-seq data. https://
morris-lab.github.io/CellOracle.documentation/tutorials/scrnaprocess.html

We need scRNA-seq data as anndata.

This CellOracle tutorial notebook assume the user have a basic knoledge and experience of scCRNA-
seq analysis with scanpy and anndata. This notebook do not intend to give introductory knowledge
about scanpy and anndata. If you are not familiar with them, please look at the documentation and
tutorials of annata (https://anndata.readthedocs.io/en/stable/) and Scanpy (https://scanpy.readthedocs.io/
en/stable/).

Load data. !!Replace the data path below when you use another data.
adata = sc.read_hb5ad ("DATAPATH")

(continues on next page)

2.2. Tutorial 13

https://morris-lab.github.io/CellOracle.documentation/tutorials/scrnaprocess.html
https://morris-lab.github.io/CellOracle.documentation/tutorials/scrnaprocess.html
https://anndata.readthedocs.io/en/stable/
https://scanpy.readthedocs.io/en/stable/
https://scanpy.readthedocs.io/en/stable/

celloracle, Release 0.8.4

(continued from previous page)

Here, we will use a hematopoiesis data by Paul 2015.

You can load preprocessed data using a celloracle function as follows.
adata = co.data.load_Paul2015_data ()

adata

] : AnnData object with n_obs x n_vars = 2671 x 1999

obs: 'paull5_clusters', 'n_counts_all', 'n_counts', 'louvain', 'cell_type',
—'louvain_annot', 'dpt_pseudotime'’

var: 'n_counts'

uns: 'cell type_colors', 'diffmap_evals', 'draw_graph', 'iroot', 'louvain',
—'louvain_annot_colors', 'louvain_colors', 'louvain_sizes', 'neighbors', 'paga',
—'paull5_clusters_colors', 'pca'

obsm: 'X_diffmap', 'X_draw_graph_fa', 'X_pca'

varm: 'PCs'
layers: 'raw_count'
obsp: 'connectivities', 'distances'

If your scRNA-seq data includes more than 20-30K cells, we recommend doing downsampling. It is because the later
simulation process will require large amount of memory if you have large data.

Also, please pay attention to the number of genes. If you are following the instruction in the previous tutorial notebook,
the scRNA-seq data should include only top 2~3K variable genes. If you have more than 3K genes, it might cause
problems in the later steps.

print (f"Cell number is :{adata.shape[0O]}")
print (f"Gene number is :{adata.shape([l]}")

Cell number is :2671
Gene number is :1999

Random downsampling into 30K cells if the anndata include more than 30 K cells.
n_cells_downsample = 30000

if adata.shape[0] > n_cells_downsample:
Let's dowmsample into 30K cells
sc.pp.subsample (adata, n_obs=n_cells_downsample, random_state=123)

print (f"Cell number is :{adata.shape[0]}")
Cell number is :2671
For the GRN inference, celloracle needs base-GRN. - There are several ways to make base-GRN. We can typically

generate TF information from scATAC-seq data or bulk ATAC-seq data. Please refer to the first step of the tutorial for
the details of this process. https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html

* If you do not have your scATAC-seq data, you can use some built-in base-GRN data.

* Base-GRN made from mouse sci-ATAC-seq atlas dataset: The built-in base-GRN was made from various
tissue/cell-types (http://atlas.gs.washington.edu/mouse-atac/). We recommend using this for mouse scRNA-seq
data. Please load this data as follows.

base_GRN = co.data.load_mouse_scATAC_atlas_lbase_ GRN()

* Promoter base-GRN: We provide base-GRN made from promoter DNA-sequencing for ten species. You can
load this data as follos.

e For Human: base_GRN = co.data.load_human_promoter_base_GRN ()

14 Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html
http://atlas.gs.washington.edu/mouse-atac/

[10]:

[19]:

[20] :

celloracle, Release 0.8.4

Load TF info which was made from mouse cell atlas dataset.
base_GRN = co.data.load_mouse_scATAC_atlas_base_GRN ()

Check data
base_GRN.head ()

peak_id gene_short_name 9430076clb5rik Ac002126.6 \
0 chrl0_100050979_100052296 4930430F08Rik 0.0 0.0
1 c¢chrl0_101006922_101007748 SNORA17 0.0 0.0
2 c¢chr10_101144061_101145000 Mgatdc 0.0 0.0
3 chr10_10148873_.10149183 9130014G24Rik 0.0 0.0
4 chr10_10149425_10149815 9130014G24Rik 0.0 0.0

Ac012531.1 Ac226150.2 Afp Ahr Ahrr Aire ... 2zZnf784 Znf8 7Znf81l6 \

0 1.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0. 0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Zznf85 Zscanl0 Zscanl6 Zscan22 Zscan26 Zscan3l Zscand

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 .0 0.0 0.0 0.0 .0 .0
2 0.0 0.0 0.0 0.0 0.0 0.0 1.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[5 rows x 1095 columns]

2. Initiate Oracle object

We can use Oracle for the data preprocessing and GRN inference steps. The Oracle object stores all of the necessary
information and does the calculations with its internal functions. We instantiate an Oracle object, then input the gene
expression data (anndata) and a TFinfo into the Oracle object.

Instantiate Oracle object
oracle = co.Oracle()

For the celloracle analysis, the anndata shoud include (1) gene expression count, (2) clustering information, (3) tra-
jectory (dimensional reduction embeddings) data. Please refer to another notebook for more information on anndata
preprocessing.

When you load a scRNA-seq data, please enter the name of clustering data and dimensional reduction data. - The
clustering data should be to be stored in the attribute of obs in the anndata. > You can check it by the following
command. >> adata.obs.columns

» Dimensional reduction data suppose to be stored in the attribute of “obsm” in the anndata. > You can check it
by the following command. > > adata.obsm.keys ()

Show data name in anndata

print ("metadata columns :", list (adata.obs.columns))

print ("dimensional reduction: ", list (adata.obsm.keys()))

metadata columns : ['paull5_clusters', 'n_counts_all', 'n_counts', 'louvain', 'cell
—type', 'louvain_annot', 'dpt_pseudotime']

dimensional reduction: ["X_diffmap', 'X_draw_graph_fa', 'X pca']

2.2. Tutorial 15

[21]:

celloracle, Release 0.8.4

In this notebook, we use raw mRNA count as an input of Oracle object.
adata.X = adata.layers["raw_count"].copy ()

Instantiate Oracle object.

oracle.import_anndata_as_raw_count (adata=adata,
cluster_column_name="louvain_annot",
embedding_name="X_draw_graph_fa")

You can load TF info dataframe with the following code.
oracle.import_TF_data (TF_info_matrix=base_GRN)

Alternatively, 1f you saved the informmation as a dictionary, you can use the code,
—~below.
oracle.import_ TF _data (TFdict=TFinfo_dictionary)

We can add additional TF-target gene pair manually.

For example, if there is a study or database that includes specific TF-target pairs, you can use such information in the
following way.

2.3.1. Make dictionary

Here, we will introduce how to manually add TF-target gene pair data.

As an example, we will use TF binding data that was published in supplemental table 4 in the paper. (http://doi.org/
10.1016/j.cell.2015.11.013).

You can dowmload this file by running the following command. If it fails, please download manually. https://raw.
githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/TF_data_in_Paull5.csv

In order to import TF data into the Oracle object, we need to convert them into a python dictionary. The dictionary
keys is a target gene, and dictionary value is a list of regulatory candidate TFs.

Download file.
'wget https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/
—TF_data_in_Paull5.csv

If you are using macOS, please try the following command.
#!curl -O https://raw.githubusercontent.com/morris—lab/CellOracle/master/docs/demo_
—data/TF_data in Paullb.csv

--2021-06-09 15:13:52-- https://raw.githubusercontent.com/morris—-lab/CellOracle/
—master/docs/notebooks/04_Network_analysis/TF_data_in_Paull5.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133,

—185.199.109.133, 185.199.108.133,

Connecting to raw.githubusercontent.com (raw.githubusercontent.com) [185.199.110.133]:
—443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1768 (1.7K) [text/plain]

Saving to: ‘TF_data_in_Paull5.csv’

TF_data_in_Paull5.c 100%[> 1.73K —-—-.-KB/s in Os

2021-06-09 15:13:52 (11.8 MB/s) — ‘TF_data_in_Paull5.csv’ saved [1768/1768]

16 Chapter 2. Contents

http://doi.org/10.1016/j.cell.2015.11.013
http://doi.org/10.1016/j.cell.2015.11.013
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/TF_data_in_Paul15.csv
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/TF_data_in_Paul15.csv

[23]:

celloracle, Release 0.8.4

We have TF and its target gene information. This is from a supplemental Fig of Paul,,
~et. al, (2015).

Paul_15_data = pd.read_csv ("TF_data_in_Paull5.csv")

Paul_15_data

TF Target_genes
Cebpa Abcblb, Acotl, C3, Cnpy3, Dhrs7, Dtx4, Edem2,
Irf8 Abcdl, Aifl, BC017643, Cbl, Ccdcl09%, Ccl6, d6...
Irf8 1100001G20Rik, 4732418C07Rik, 9230105E10Rik, A...
K1fl 2010011I20Rik, 5730469M10Rik, Acsl6, Add2, Ank...
Sfpil 0910001L09Rik, 2310014H01Rik, 4632428N05Rik, A...

S w N e O

Make dictionary: dictionary Key is TF, dictionary Value is list of target genes
TF_to_TG_dictionary = {}

for TF, TGs in zip(Paul_15_data.TF, Paul_15_data.Target_genes) :
convert target gene to list

TG_list = TGs.replace(" ", "").split(",")
store target gene list in a dictionary
TF_to_TG_dictionary[TF] = TG_list

We have to make a dictionary, in which a Key is Target gene and value is TF.
We invert the dictionary above using a utility function in celloracle.
TG_to_TF_dictionary = co.utility.inverse_dictionary (TF_to_TG_dictionary)

HBox (children=(FloatProgress (value=0.0, max=178.0), HTML (value='"')))

2.3.2. Add TF informatio dictionary into the oracle object

Add TF information
oracle.addTFinfo_dictionary (TG_to_TF_dictionary)

3. Knn imputation

Celloracle uses the same strategy as velocyto for visualizing cell transitions. This process requires KNN imputation
in advance.

For the KNN imputation, we need PCA and PC selection first.

Perform PCA
oracle.perform_ PCA ()

Select important PCs

plt.plot (np.cumsum(oracle.pca.explained_variance_ratio_) [:100])

n_comps = np.where(np.diff (np.diff (np.cumsum(oracle.pca.explained_variance_ratio_))>0.
—002)) [0] [0]

plt.axvline (n_comps, c="k")

print (n_comps)

n_comps = min (n_comps, 50)

2.2. Tutorial 17

celloracle, Release 0.8.4

0.40

0.35

0.30

0.25

0.20

0.15

0 20 40 60 80 100

Estimate the optimal number of nearest neighbors for KNN imputation.

n_cell = oracle.adata.shape[0]
print (f"cell number is :{n_cell}")

cell number is :2671

k = int (0.025%n_cell)

print (f"Auto-selected k is :{k}")
Auto-selected k is :66

oracle.knn_imputation (n_pca_dims=n_comps, k=k, balanced=True, b_sight=k=«8,
b_maxl=k*4, n_jobs=4)

4. Save and Load.

You can save Oracle object using Oracle.to_hdf5 (FILE_NAME.celloracle.oracle).

Pleasae use co.load_hdf5 (FILE_NAME.celloracle.oracle) toload the saved file.

Save oracle object.
oracle.to_hdf5 ("Paul_15_data.celloracle.oracle")

Load file.
oracle = co.load_hdf5("Paul_15_data.celloracle.oracle")

18 Chapter 2. Contents

celloracle, Release 0.8.4

5. GRN calculation

The next step is constructing a cluster-specific GRN for all clusters.

* You can calculate GRNs with the get_1inks function, and the function returns GRNs as a Links object.
The Links object stores inferred GRNs and the corresponding metadata. You can do network analysis with the
Links object.

¢ The GRN will be calculated for each cluster/sub-group. In the example below, we construct GRN for each unit
of the “louvain_annot” clustering.

check data
sc.pl.draw_graph (oracle.adata, color="louvain_annot")

louvain_annot

Ery O GMP_2
. " Ne El‘y_l GMP |_0
W" i Ery 2 e GMPI1
Ery_3 Gran_0
Ery_4 ® Gran_1l
~ Ery_5 ® Gran_2
< Ery_6 ® Gran_3
- ® Ery 7 ® MEP_O
- ® Ery 8 Mk_0
. ® Eryo Mo_0
. ‘g e GMPO Mo_1
| GMP_1 Mo_2
caf e W
FA1
$stime

Calculate GRN for each population in "louvain_annot" clustering unit.

This step may take long time. (~30 minutes)

links = oracle.get_links (cluster_name_for_ GRN_unit="louvain_annot", alpha=10,
verbose_level=10, test_mode=False)

Although celloracle has many functions for network analysis, you can analyze GRNs by hand if you choose. The raw
GRN data is stored as a dictionary of dataframe in the attribute of 1inks_dict.

For example, you can get the GRN for the “Ery_0” cluster with the following commands.
links.links_dict.keys ()

dict_keys(['Ery_0', 'Ery_1', 'Ery_2', 'Ery_3', 'Ery_4', 'Ery_5', 'Ery_6', 'Ery_ 7',
~'Ery_8', 'Ery_9', 'GMP_O', 'GMP_1', 'GMP_2', 'GMP1_0', 'GMP1_1', 'Gran_0', 'Gran_1',
- 'Gran_2', 'Gran_3', 'MEP_O0O', 'Mk_0', 'Mo_0', 'Mo_1', 'Mo_2'])

links.links_dict["Ery_0"]

source target coef_mean coef_abs P -logp
0 Nfe2 0610007LO1Rik 0.003554 0.003554 1.443188e-02 1.840677
1 Id2 0610007L01Rik 0.001891 0.001891 1.71186%e-01 0.766530
2 Zbtbl 0610007L01Rik -0.002724 0.002724 6.442622e-03 2.190937
3 E1fl 0610007L01Rik 0.006480 0.006480 1.326915e-06 5.877157

(continues on next page)

2.2. Tutorial 19

[36]:

[43]:

[43]:

[46] :

celloracle, Release 0.8.4

4

74467
74468
74469

74470
74471

[74472

Hnf4a 0610007LO1Rik 0.

Stat3
Etsl
Nfkbl
Flil
K1f4

rows x 6 columns]

Z2yx
Z2yx
Zyx
2yx
Zyx -

O O O O o

You can export the file as follows.

Set cluster name

cluster = "Ery_0O"

Save

#links.links_dict[cluster].to _csv (f"raw_GRN_for_ {cluster}.csv")

as csv

001538

.022902
.015078
.015030
.012840
.003232

O O O O o

.001538
.022902
.015078
.015030

.012840
.003232

o w N

.538728e-01

.967776e-09
.280509e-05
.214934e-07
.909677e-05
.250538e-05

(continued from previous page)
0.451153
.098663
.641968
.492828

.160542
.902903

&S oY b

The links object has a color information in an attribute, palette. This information is used for the visualization

The sample will be visualized in that order. Here we can change color and order.

Show the contents of pallete
links.palette

Ery_0
Ery_1
Ery_2
Ery_3
Ery_4
Ery_5
Ery_6
Ery_7
Ery_8
Ery_9
GMP_0
GMP_1
GMP_2
GMP1_0
GMP1_1
Gran_Q0
Gran_1
Gran_2
Gran_3
MEP_ 0

palette
#9CDED®6
#D5EAE7
#F3E1EB
#F6C4E1L
#EF79CD4
#E6AFBY
#E07B91
#D33F6A
#BB7784
#B8E063B
#11C638
#8DD593
#C6DEC7
#B5BBE3
#7D87B9
#1CEGFF
#8595E1
#4A6FE3
#023FAS
#0FCFCO
#C7CT7C7
#EAD3C6
#FO0B98D
#EF9708

Change the order of pallete

order = ['MEP_O0', 'Mk_O0', 'Ery_O0',
'BEry_1', 'Ery 2', 'Ery_3', 'Ery 4', 'Ery_5', 'Ery_6', 'Ery 7', 'Ery_8', 'Ery_
-9,
'"GMP_0', 'GMP_1', 'GMP_2', 'GMP1l 0', 'GMP1l 1',
'Mo_0', 'Mo_1', 'Mo_2',
(continues on next page)
20 Chapter 2. Contents

[18]:

celloracle, Release 0.8.4

(continued from previous page)
'Gran_0', 'Gran_1', 'Gran_2', 'Gran_3']
links.palette = links.palette.loc[order]
links.palette

palette
MEP_0 #0FCFCO
Mk_0 #C7CT7C7

Ery_0 #9CDED6
Ery_1 #D5SEAE7
Ery_2 #F3E1EB
Ery_3 #F6C4E1L
Ery_4 #F79CD4
Ery_5 #EGAFBO
Ery_6 #E07B91
Ery_7 #D33F6A
Ery_8 #BB7784
Ery_9 #8E063B
GMP_0 #11C638
GMP_1 #8DD593
GMP_2 #C6DEC7
GMP1_0 #B5BBE3
GMP1_1 #7D87B9

Mo_0 #EAD3C6
Mo_1 #F0B98D
Mo_2 #EF9708

Gran_0 #1CEG6FF
Gran_1 #8595E1
Gran_2 #4A6FE3
Gran_3 #023FA5

6. Network preprocessing

Using base-GRN, CellOracle constructs GRN models as lits of a directed edge between TF and its target gene. We
need to remove weak edges or insignificant edges before doing network analysis.

We filter the network edges as follows.
1. Remove uncertain network edges based on the p-value.
2. Remove weak network edge. In this tutorial, we pick up the top 2000 edges by edge strength.

The raw network data is stored as an attribute, links_dict, while filtered network data is stored in
filtered_links.

links = co.data.load_tutorial_links_object ()

links.filter_links (p=0.001, weight="coef_ abs", threshold_ number=2000)

In the first step, we examine the network degree distribution.

Network degree, which is the number of edges for each node, is one of the important metrics used to
investigate the network structure (https://en.wikipedia.org/wiki/Degree_distribution).

Please keep in mind that the degree distribution may change depending on the filtering threshold.

plt.rcParams|["figure.figsize"] = [9, 4.5]

2.2. Tutorial 21

https://en.wikipedia.org/wiki/Degree_distribution

celloracle, Release 0.8.4

[19]: links.plot_degree_distributions (plot_model=True,

#save=f"{save folder}/degree_
—distribution/",

degree distribution (log scale)

degree distribution slope: -1.222, r2: 0.8265
°
0.25
-2 .
°
0.20 L
-3
®e
015 | ® < X
~ o
T o -4 r 4
° = [
0.10
(]
[] -5 L
0.05 . oo
P o®\e
) YO -
0.00 apeNe ® ® o o @
0 20 40 60 80 100 120 0 1 2 3 4 5
k log k
degree distribution (log scale)
degree distribution slope: -1.234, r2: 0.894
025 | @
-2
0.20
°
-3
0.15 -
v
¥ o
= o —4
. S
0.10
°
° -5
0os | ®
°
k -
0.00 oum® ¢ e o0)
0 25 50 75 100 125 0 1 2 3 4 5

22 Chapter 2. Contents

celloracle, Release 0.8.4

degree distribution (log scale)

degree distribution slope: -1.204, r2: 0.7982

0.25

0.20

P(k)

log P(k)

0.10

0.05

0.00 ho oo oo o °

o] 25 50 75 100 125 150 o] 1 2

Py o0

log k

degree distribution (log scale)
degree distribution slope: -1.196, r2: 0.7785

0.25

0.20

P(k)

o

o

w

log P(k)

0.10

0.05

0.00 h-. e @ o o

0 50 100 150 o] 1

2.2. Tutorial 23

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)

slope: -1.196, r2: 0.8047
0.30
°
0.25
020 ®
<
¥ 0.15 T
o o
Q
° k)
0.10
°
°
005 | o
0.00 .hm ” e e e
0 25 50 75 100 125 0 1 2 3 4 5
log k
degree distribution (log scale)
degree distribution slope: -1.106, r2: 0.7296
0.30 | o °
0.25
0.20
[—
P =
¥ 0.15 o
o [] _gw
010 | o
[]
0.05| @
)
0.00 Lnnmo ° ° °
0 50 100 150 200 0 1 2 3 a4 5
k log k

24

Chapter 2. Contents

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)
slope: -1.188, r2: 0.7544

-1
° ®
0.30
0.25
0.20
<
= -
a 0.15 ° z_gx
0.10
°
005 | §
o
000 | Nonmmses® oo o ° °
0 50 100 150 0 1 2 3 4 5
k log k
degree distribution (log scale)
degree distribution slope: -1.193, r2: 0.797
°
0.25
0.20
[
. 0.15 <
¥4 o
o [] o
S
0.10
°
®
0.05 | @
0.00 h“ e ° .
0 50 100 150 200 250 0 1 2 3 4 5
k log k

2.2. Tutorial

25

26

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)

0.25

0.20

P(k)

®

0.10

0.05

eoe o

0.00

|

slope: -1.138, r2: 0.7979

log P(k)

o] 25 50 75

k

100 125

degree distribution

150 o] 1

log k

degree distribution (log scale)

0.25

020 | @

P(k)
o
i
w

0.10

0.05

e o0 ©

0.00

slope: -1.119, r2: 0.7705

log P(k)

Ln Yueame ® o
(0] 50 100 150

Chapter 2. Contents

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)
slope: -1.255, r2: 0.8315

025 | ®
-2
0.20
-3
015 | @ =
= -
T t_g\ -4
ol0 | @
°
-5
005 | @
[
L) .
0.00 SAmteat o °
0 20 40 60 80 100 0 1 2 3 4
k log k
degree distribution (log scale)
degree distribution slope: -1.214, r2: 0.8144
°
0.25 °
-2
°
0.20 L 14
-3 °
¢ ®
__ 015 = o °
T = ¢
g~ ®
010 | @ °
°
' _s °
° °
005 | @
o [1)
L -
0.00 o 0 o L o wumpoO e ©
0 25 50 75 100 125 0 1 2 3 a 5
k log k
2.2. Tutorial 27

celloracle, Release 0.8.4

degree distribution (log scale)

degree distribution slope: -1.205, r2: 0.8183
0.25
°
0.20
015 | o H
&
= o
T ° z_gn
010 | o
°
005 | §
0.00 L. ° ° .
0 50 100 150 200 0 1 2 3 4 5
k log k
degree distribution (log scale)
degree distribution slope: -1.19, r2: 0.7585
°
0.25
0.20
°
0.15 =
= o
= g
. —
0.10
°
°
0.05
0.00 xo Moo oo °
0 25 50 75 100 125 0 1 2 3 4 5
k log k

28 Chapter 2. Contents

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)
slope: -1.245, r2: 0.8746

025 | @
-2
0.20
-3
015 | o =
) o
. ° g
010 | @
* -5
0.05 °
\Qs- -
0.00 o o - °
0 20 40 60 80 100 120 1 2 3 4
k log k
degree distribution (log scale)
degree distribution slope: -1.224, r2: 0.8432
025 | ®
-2
0.20
-3
015 | ® —
Y3
< o
o [} gm -4
010 | o
L -5
0.05 F 4
v, “6
0.00 P “ne® o oo e
0 20 40 60 80 100 1 2 3 a4
k log k
2.2. Tutorial

29

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)

slope: -1.24, r2: 0.8339

°
-2
0.20
° -3
0.15
— ~
X [+
o L] o —4
0.10 °
o -5
0.05 °
°
s -6
0.00 Rotanemmcoce e o
20 40 60 80 100 120 0 1 2 3 4
k log k
degree distribution (log scale)
degree distribution slope: -1.245, r2: 0.811
0.25
0.20
=
< 015 | @ T
o o
S
0.10 ‘
0.05
°
0.00 M] °
0 25 50 75 100 125 0 1 2 3 4 5
k log k

30

Chapter 2. Contents

celloracle, Release 0.8.4

degree distribution

degree distribution (log scale)
slope: -1.198, r2: 0.7785

0.30
°
0.25
0.20
k%
zo015 | ® i
o o
°
°
010 | @
°
0.05 | @
0.00 ;.. o o0 °
0 50 100 150 0 1 2 3 4 5
k log k
degree distribution (log scale)
degree distribution slope: -1.216, r2: 0.8226
°
0.25
0.20
° —
__0.15 =
¥4 o
o o
S
0.10 s
°
0.05
0.00 hoo wmeoe o o
0 25 50 75 100 125 150 0 1 2 3 a 5
k

2.2. Tutorial

31

celloracle, Release 0.8.4

degree distribution (log scale)
degree distribution

slope: -1.259, r2: 0.8678
°
0.25
-2
0.20
-3
- 015 ;_2
‘D__’ . gl —4
010 | @
s s
0.05 3
" e
0.00 o o [] []
0 25 50 75 100 125 0 1 2 3 4 5
k log k
degree distribution (log scale)
degree distribution slope: -1.248, r2: 0.8059
025 | @
0.20
°
0.15 _
Y3
< o
o ° _gw
010 | @
0.05 ;
0.00 &.‘ ® afe e ®
0 25 50 75 100 125 0 1 2 3 4 5
k

Chapter 2. Contents

celloracle, Release 0.8.4

degree distribution (log scale)

degree distribution slope: -1.216, r2: 0.8139
°
0.25
0.20
[] <
< 0.15 T
o o
k)
[
010 | o
@
0.05 *
[
0.00 M oo Qoo e)
0 20 40 60 80 100 0 1 2 3 4
k log k
degree distribution (log scale)
degree distribution slope: -1.235, r2: 0.8625
0.30
°
0.25
0.20
=
<015 | @ o
o o
S
0.10
°
[
005 | @
°
0.00 h.oo e® o o °
0 25 50 75 100 125 150 0 1 2 3 4 5
k log k
: plt.rcParams(["figure.figsize"] = [6, 4.5]

Next, we calculate several network score using some R libraries. Please make sure that R libraries are installed in your
PC before running the command below.

Calculate network scores. It takes several minutes.
links.get_score ()

processing... batch 1/3
Ery_0: finished.
Ery_1: finished.
Ery_2: finished.

(continues on next page)

2.2. Tutorial 33

celloracle, Release 0.8.4

(continued from previous page)

Ery_3: finished.

Ery_4: finished.

Ery_5: finished.

Ery_6: finished.

Ery_7: finished.
processing... batch 2/3
Ery_8: finished.

Ery_9: finished.

GMP_0: finished.

GMP_1: finished.
GMP1_0: finished.
Gran_0: finished.
Gran_1: finished.
Gran_2: finished.
processing... batch 3/3
MEP_0: finished.

Mk_0: finished.

Mo_0: finished.

Mo_1: finished.

The score is stored as a attribute merged_score

links.merged_score.head()

degree_all degree_in degree_out clustering_coefficient \

Mycn 42 0 42 0.003484
Ybx1 68 10 58 0.032924
Nfe2 124 7 117 0.025702
Gata2 108 8 100 0.031499
Myc 78 7 71 0.038628

clustering_coefficient_weighted degree_centrality_all \

Mycn 0.003821 0.076642
Ybx1 0.033228 0.124088
Nfe2 0.026156 0.226277
Gataz 0.033937 0.197080
Myc 0.042569 0.142336

degree_centrality_in degree_centrality_out Dbetweenness_centrality \

Mycn 0.000000 0.076642 0
Ybx1 0.018248 0.105839 1290
Nfe2 0.012774 0.213504 1556
Gata2 0.014599 0.182482 1572
Myc 0.012774 0.129562 1507
closeness_centrality ... assortative_coefficient \
Mycn 0.000010 ... -0.124407
Ybx1 0.000004 ... -0.124407
Nfe2 0.000008 ... -0.124407
Gata2 0.000004 ... -0.124407
Myc 0.000005 ... -0.124407

average_path_length community_edge_betweenness community_random_walk \

Mycn 2.523462 1 1
Ybx1 2.523462 2 6
Nfe2 2.523462 1 1
Gata2 2.523462 3 1

(continues on next page)

34 Chapter 2. Contents

[52]:

[53]:

[53]:

celloracle, Release 0.8.4

(continued from previous page)

Myc 2.523462 4 1

community_eigenvector module connectivity participation \

Mycn 1 5 3.591559 0.511338
Ybx1 3 4 5.558769 0.608564
Nfe2 1 3 5.267448 0.727107
Gataz 4 3 4.823948 0.705761
Myc 4 4 4.320821 0.709730

role cluster

Mycn Connector Hub Ery_0
Ybx1 Connector Hub Ery_0
Nfe2 Connector Hub Ery_0
Gata2 Connector Hub Ery_0
Myc Connector Hub Ery_0

[5 rows x 22 columns]

Save processed GRN. We use this file in in silico TF perturbation analysis.

Save Links object.
links.to_hdf5(file_path="links.celloracle.links")

You can load files with the following command.
links = co.load_hdf5(file_path="links.celloracle.links")

If you are not interested in Network analysis and jut want to do TF perturbation simulation, you can skip the
network analysis described below. Please go to next step: in silico gene perturbation with GRNs

https://morris-lab.github.io/CellOracle.documentation/tutorials/simulation.html

7. Network analysis; Network score for each gene

The Links class has many functions to visualize network score. See the documentation for the details of the functions.

We have calculated several network scores using different centrality metrics. >The centrality score is one of the
important indicators of network structure (https://en.wikipedia.org/wiki/Centrality).

Let’s visualize genes with high network centrality.

Check cluster name
links.cluster

['Ery 0",
'BEry_1'",
'Ery_2"',
'Ery_3',
'Ery_4"',
'Ery_5"',
'Ery_6"',
'BEry_7',
'Ery_8',
'Ery_9',
'"GMP_O0"',
'GMP_1"',

(continues on next page)

2.2. Tutorial 35

https://morris-lab.github.io/CellOracle.documentation/tutorials/simulation.html
https://en.wikipedia.org/wiki/Centrality

celloracle, Release 0.8.4

'GMP_2"

"MEP_0'
'Mk_0',
'Mo_0"',
"Mo_1"',
'Mo_2"]

[54]: # Visualize top n—-th genes that have high scores.
links.plot_scores_as_rank (cluster="MEP_0",

’

'GMP1_0"',
'GMP1_1",
'Gran_0"',
'Gran_1",
'Gran_2"',
'Gran_3"',

’

—score™)

degree_centrality_all

top 30 in MEP_O

n_gene=30,

0.05 0.10 015 0.20 0.25
degree_centrality_all

(continued from previous page)

save=f" {save_folder}/ranked_

36

Chapter 2. Contents

celloracle, Release 0.8.4

degree_centrality _in
top 30 in MEP_O

0.02 0.03 0.04

degree_centrality_in

degree_centrality_out
top 30 in MEP_O

5 0.10 0.15 0.20 0.25
degree_centrality_out

0.

o

2.2. Tutorial

37

celloracle,

Release 0.8.4

betweenness centrality
top 30 in MEP_O

1000 2000 3000 4000
betweenness_centrality

o

eigenvector_centrality
top 30 in MEP_O

0.4 0.6 0.8 1.0
eigenvector_centrality

38

Chapter 2. Contents

celloracle, Release 0.8.4

T
=
o
SOOX Q0
[Seye Ny

<
3) o
S0g ~a3c
P
oA NLU RPWNRD 570 AAONEN

A
oa=
I—‘-l'-‘-BLQ
DIHLTY,

$o
=3
55

1)
Fl

in
Tmem50a

participation
top 30 in MEP_O

L]
°
L]
[J
@
L]
@
(
L
L]
@

®

®

[4

®

@
@
o
®
@
L]
[4
®
[4
[
®
®
°
o
®
0.76 0.78 0.80

participation

By comparing network scores between two clusters, we can analyze differences in GRN structure.

[55]:

percentile=98,

eigenvector_centrality

plt.ticklabel format (style='sci',axis='"y',scilimits=(0,0))
links.plot_score_comparison_2D (value="eigenvector_centrality",
clusterl="MEP_O0",

cluster2="GMP1_0",

1.0

0.8

0.6

GMPI_0

0.4

0.2

0.0

ty6c2

Etsl

Myc
e

NfeRir3c1
calic g

Mef2c

E2f%
& &

0.0

[56]:

plt.ticklabel_format (style='sci',axis="y',scilimits=(0,0))

links.plot_score_comparison_2D (value="betweenness_centrality",
clusterl="MEP_O0O",
percentile=98,

0.6 0.8

1.0

cluster2="GMP1 0"
save=f" {save_folder}/score_comparison")

ataz

save=f" {save_folder}/score_comparison")

’

2.2. Tutorial

39

[57]:

[58]:

celloracle, Release 0.8.4

betweenness_centrality

1le3 :
6 SITTarCU L
5
Myc
[cg
Irf8
4 cs
o
I 3
% m;fmml
© Smagkz
2 ca
Myb
Etve eI
1 GrSmarcaS cs
Runx1
Nfya gebpa Nfe2
© Nfe212 GatalCxxcl Rrefilfl SeHskb7a Gata2
0| B&@B o o e &
0 1000 2000 3000 4000
MEP_0

plt.ticklabel_format (style='sci',axis="y',scilimits=(0,0))
links.plot_score_comparison_2D (value="degree_centrality_all",

clusterl="MEP_O0O",

cluster2="GMP1_0",

percentile=98, save=f"{save_folder}/score_comparison")
le—1 degree_centrality all
Nfe2
&
2.0 Myc
Mef2€”
1.5 Irfg H2f4
' StatZbtb7a o
S
[Nr3cl
=
G 1.0 e
Flil
Gataz2
0.5
KIf1
0.0
0.00 0.05 0.10 0.15 0.20 0.25

MEP_0

In the following session, we focus on how a gene’s network score changes during the differentiation.

Using Gata2, we introduce how to visualize networks scores dynamics.

Gata?2 is known to play an essential role in the early MEP and GMP populations. .

Visualize Gata2 network score dynamics
links.plot_score_per_cluster (goi="Gata2",

:_)")

save=f" {save_folder}/network_score_per_gene/

40

Chapter 2. Contents

[59]:

[62]:

[62]:

celloracle, Release 0.8.4

cluster
(9]
=
N I
o
@]
@
@]

Q
=
3
U
=
[
L
o

°c 000, 0
[J
[1 BN J

0.0 0.2 0.4 2500 5000 0.0 0.5 1.0

degree betweenness eigenvector
centrality centrality centrality

If a gene have no connections in a cluster, it is impossible to calculate network degree scores. Thus the scores will not
be shown. For example, Cebpa have no connection in the erythloids clusters, and there is no degree scores for Cebpa

in these clusters as follows.
links.plot_score_per_cluster (goi="Cebpa")

MEP_0 @] L @

cluster
[n)]
=
o<
o
@]
®
]

Gran_1 @]
L
[]
0.00 0.05 250 500 0.0 0.1 0.2

degree betweenness eigenvector
centrality centrality centrality

©

=

21

3

N

®
o 90»

You can check filtered network edge as follows.

cluster_name = "Ery_ 1"
filtered_links_df = links.filtered_links[cluster_name]
filtered_links_df.head()

source target coef_mean coef_abs P
5480 Gata?2 Apoe 0.100094 0.100094 6.27438le-16

-logp
15.202429

(continues on next page)

2.2. Tutorial

41

[64]:

celloracle, Release 0.8.4

(continued from previous page)

5496 Zfhx3 Apoe 0.098389 0.098389 1.749953e-13 12.756974
68791 Hnfd4a Top2a 0.098258 0.098258 7.209973e-10 9.142066
48857 E2f4 Phflo0 0.095547 0.095547 1.429657e-13 12.844768
5470 Nfatc3 Apoe -0.095185 0.095185 2.385889e-14 13.622350

You can confirm that there is no Cebpa connection in Ery_0 cluster.

filtered links_df[filtered_links_df.source == "Cebpa"]

Empty DataFrame
Columns: [source, target, coef_mean, coef_abs, p, —-logpl]
Index: []

We can calculate gene cartography as follows.
The gene cartography will be calculated for the GRN in each cluster.

Gene cartography is a method for gene network analysis. The method classifies gene into several groups
using the network module structure and connections. For more information on gene cartography, please
refer to the following paper (https://www.nature.com/articles/nature03288).

Plot cartography as a scatter plot
links.plot_cartography_scatter_per_ cluster (scatter=True,

kde=False,

gois=["Gatal", "Gata2", "Sfpil"l, #,
—Highlight genes of interest

auto_gene_annot=False,

args_dot={"n_levels": 105},

args_line={"c":"gray"}, save=f"{save_
—~folder}/cartography")
cartography in Ery_0

7

6

5 @-Cata2
2
S_ 4
BN
Eg 3
£5
<o
£ 2
=

1

o| o=>5fpil o Gatal

-1

0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

42 Chapter 2. Contents

https://www.nature.com/articles/nature03288

celloracle, Release 0.8.4

cartography in Ery 1

10
8
v o Gata2
—~ 6
BN
£y
£o 4
=0 o Gatal
= 2
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Ery 2
8
@9 6
jn—-\
EJ:',
Q
cLa
£9 o Gata2
E'U
= 2
o- Gatal
0
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Ery 3
10
8
Q@
=
BN 6
£
£5
=g 4
=0
=
2 o Gata2
a-CGatal
0
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

2.2. Tutorial

43

celloracle, Release 0.8.4

cartography in Ery 4

=)}

Whithin-module
degree (z)
N

G_Gata'jl.
2 @ Gata2
0
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Ery 5
12
10
Y]
5 8
BN
Eg o
£5
Sa
25 4
=
2
o= Catal
0
o Gata2
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Ery_6
10
8
Q@
j —_—
BN 6
£
£5 2
<o
%'c
2 e Gata2
Gatal
0 o=
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

44

Chapter 2. Contents

celloracle, Release 0.8.4

12
10
@ 8
2=
N
O —
6
£9
S5
Sao
4
=0
=
2
0
10
8

Whithin-module
degree (z)
B

10

Whithin-module
degree (z)
i

cartography in Ery 7

Gatal
o Cata2 &=
- Sfpil
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Ery 8
o= Gatal
o Gata2
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Ery 9
- Gatal
o Gata2
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

2.2. Tutorial

45

celloracle, Release 0.8.4

cartography in GMP_0

/ o-Gata2
6
5
2@
3
~ 4
N
g o Gatal
g® 2 .
= &= 5fpil
1
0
-1
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in GMP_1
8 - Gata2
6
o
jn—-\
)
£g ¢
£5
o
o
= 2
@ Gataly 'Sfpil
o]
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in GMP_2
12 o- Gata2
10
Q
= 8
)
Eg o
c e
£9
E° 4 - Gatal
g L
2 o= Sfpil
0
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

46

Chapter 2. Contents

celloracle, Release 0.8.4

cartography in GMPI_0

=2}

&L Gata2

Whithin-module
degree (z)
i

N

Sfpil
o Gatag—SfP

o]

0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in GMPI_1

8
6
o
a=
N
O —
4
£¢
£5
£a
c° 5
=
o GCata2 o= Sfpil
0 @ GCatal

0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Gran_0

o Gata2

6
L
=
BN 4
£¢
£5
£0
£° 2
= o STPil

o]

o Gatal
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

2.2. Tutorial 47

celloracle, Release 0.8.4

Whithin-module

Whithin-module
degree (z)

Whithin-module
degree (z)

cartography in Gran_1

8
6
4
2
Gatad 5fPil
0 G- o Gata2
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Gran_2
8
6
4
2
Sfpil
Gatal G—
0 o G&ta2
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Gran_3
10
8
6
N
o
5 4
Q
=]
2
0
o Gata2
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

48

Chapter 2. Contents

celloracle, Release 0.8.4

cartography in MEP_O
3 oL Gata2
K] 6
=P
g!:'.
)]
T 4
c = Gatal
P G-
h=h-]
£ u 1
= 2 6 Spil
0
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Mk_0
- GCata2
6
o
ja—-\
gy 4
E g @ Gatal
=0
S0
o= Sfpil
0
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Mo_0
10
8
2
S_. 6
TN
£
zg 4
b=h]
ey
= 2
0| g_Gata2 o_Gatal @-SfPil
0.0 0.2 0.4 0.6 0.8 1.0

Participation coefficient (P)

2.2. Tutorial

49

[22]:

celloracle, Release 0.8.4

cartography in Mo _1

7
6
5
2
gz ¢
[
TR
=
L
£% 2
=
1 .
. a=5fpil
Gat
o- Fthtal
-1
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
cartography in Mo_2
10
8
92
S~ 6
BN
£d
£8 ¢
g'c
2
- 5fpil
0 @ Gatal - Gata2
0.0 0.2 0.4 0.6 0.8 1.0
Participation coefficient (P)
plt.rcParams|["figure.figsize"] = [4, 7]

Plot the summary of cartography analysis

links.plot_cartography_term(goi="Gata2",

save=rf"{save_folder}/cartography",

)

50

Chapter 2. Contents

celloracle, Release 0.8.4

MEP_0
Mk_0
Ery_0

Ery_ 1

Ery_2
Ery_3

m
o
<
S

‘an'm 1i'n

Ery_5
Ery_6

Ery 7
Ery_8
Ery 9

GMP_0

GMP_1

GMP_2

GMPI_0

GMPI_1
Mo_0
Mo_1
Mo_2

Gran_0

Gran_1

Gran_2

Gran_3

cluster

Ultra peripheral
Peripheral
Connector

Kinless
Provincical Hub
Connector Hub

Kinless Hub

8. Network analysis; network score distribution

Next, we visualize the distribution of network score to get insight into the global trend of the GRNS.

plt.rcParams|["figure.figsize"] = [6, 4.5]

plt.subplots_adjust (left=0.15, bottom=0.3)

plt.ylim([0,0.040])

links.plot_score_discributions (values=["degree_centrality_all"], method="boxplot",
#save=f"{save folder}",

)

2.2. Tutorial 51

celloracle, Release 0.8.4

0.040

0.035

o
o
w
o

0.025

0.020

0.015

degree_centrality_all

Q
o
=
o

0.005

il

cluster

0.000

E ry:5
Ery 6

GMP_0

GMP_1

GMPI_1

Mo 0

Gran_1

Gran_2

Gran_3

MEP_0
Mk_0
Ery O
Ery 1
Ery 2
Ery_3
Ery 4 | 1T }——
Ery 7
Ery_8
Ery 9

GMP_2

GMPI_0
Mo_1
Mo_2

Gran_0

[69]: plt.subplots_adjust (left=0.15, bottom=0.3)
plt.ylim ([0, 0.28])
links.plot_score_discributions (values=["eigenvector_centrality"], method="boxplot",
—save=f" {save_folder ")

0.25
z
T 020
5
C
1]
©/0.15
[=]
S
(]
(]
> 0.10
1]
o
T
0.05
0.00
OIO °|H|N|m|¢|m|®|h|m|m|°HN|O HloHNOIHINIMI
o X >\>\>\>\>\>\>\>\>\>\D.D.D.EEO°OCCCC
Y UuUUUUuUULs=2=25s=22080p00Q0
= (CRCRCRGRT] G060

cluster

[70]: plt.subplots_adjust (left=0.15, bottom=0.3)
links.plot_network_entropy_distributions (save=f" {save_folder /")

52 Chapter 2. Contents

celloracle, Release 0.8.4

1.000
0.975

0.950] T T

- I g S Ty

o
[(o}
o
o

normalized
entropy

0.875

0.850 |~ -

0.825

E ry:3
Ery 4
Ery 5

GMP 0

GMP_1

GMP_2

GMPI_0

GMPI_1

Mo_0
Mo_1
Mo_2

Gran_0

Gran_1

Gran_2

MEP_0O
Mk_0
Ery_O
Ery_1
Ery 2
Ery_6
Ery_7
Ery_8
Ery 9
Gran_3

cluster

Please go to next step: in silico gene perturbation with GRNs**

https://morris-lab.github.io/CellOracle.documentation/tutorials/simulation.html

in silico gene perturbation with GRNs

in silico gene perturbation with GRNs

celloracle leverage GRNs to simulate signal propagation inside a cell. We can estimate the effect of gene pertur-
bation by the simulation with GRNs.

The jupyter notebook files and data used in this tutorial are available here .

Python notebook

Overview

This notebook describes how to do in silico TF perturbation using GRN models. Please read our paper first to know
about the CellOracle algorithm.

Notebook file

Notebook file is available at CellOracle GitHub. https:/github.com/morris-lab/CellOracle/blob/master/docs/
notebooks/05_simulation/Gatal _KO_simulation_with_Paul_etal_2015_data.ipynb

2.2. Tutorial 53

https://morris-lab.github.io/CellOracle.documentation/tutorials/simulation.html
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/05_simulation/Gata1_KO_simulation_with_Paul_etal_2015_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/05_simulation/Gata1_KO_simulation_with_Paul_etal_2015_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/05_simulation/Gata1_KO_simulation_with_Paul_etal_2015_data.ipynb

celloracle, Release 0.8.4

Data

In this notebook, CellOracle uses two input data below for the GRN model construction.

 Input datal: Oracle object. Please look at the previous notebook to know how to make a Oracle object from
scRNA-seq. https://morris-lab.github.io/CellOracle.documentation/notebooks/04_Network_analysis/Network_
analysis_with_Paul_etal_2015_data.html

In this tutorial, we use demo data made from hematopoiesis sScRNA-seq data. We can load the demo Oracle object
as follows.

oracle = co.data.load_tutorial_oracle_object ()

* Input data2: Links object. Links object is a class to store GRN data. We need GRN models stored as a
Links object for simulation. In this tutorial, we use demo GRNs made from hematopoiesis sScCRNA-seq data
and mouse sciATAC-seq atlas base-GRN. We can load the demo Links object as follows.

links = co.data.load_tutorial_links_object ()

What you can do

In this notebook, we perform two analyzes.

1. insilico TF perturbation to simulate cell identity shift. CellOracle uses the GRN model to simulate cell identity
shift in response to TF perturbation. For this analysis, you need to construct GRN models in this notebook first.

2. Compare simulation vector with development vectors. In order to properly interpret the simulation results, it
is very important to consider the natural direction of development. First, I will show you how to get a pseudo-
time gradient vector field that represents the direction of development. Then, we compare the CellOracle TF
perturbation simulation vector field with the development vector field by calculating the inner product score.
See below for more information.

Custom data class / object

In this notebook, CellOracle uses four custom classes, Oracle, Links, Gradient_calculator, and
Oracle_development_module.

* Oracle is the main class in the CellOracle package. It will do almost all calculations of GRN model construc-
tion and TF perturbation simulation.

e Links is a class to store GRN data.

* Gradient_calculator calculates development vector field using pseudotime information. We need the
pseudotime data for this calculation. Please see another notebook how to get pseudotime data.

* Oracle_development_module integrates Oracle object data and Gradient_calculator object
data to analyze how TF perturbation affects on the developmental process. It have many visualization functions.

54 Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/notebooks/04_Network_analysis/Network_analysis_with_Paul_etal_2015_data.html
https://morris-lab.github.io/CellOracle.documentation/notebooks/04_Network_analysis/Network_analysis_with_Paul_etal_2015_data.html

celloracle, Release 0.8.4

0. Import libraries

import os
import sys

import matplotlib.colors as colors
import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import scanpy as sc

import seaborn as sns

This notebook was made with celloracle version 0.7.0. Please use celloracle>=0.7.0. Otherwise you may get an error.

import celloracle as co

co.__version_

'0.7.0"

#plt.rcParams|["font.family"] = "arial"
plt.rcParams|["figure.figsize"] = [6,6]

$config InlineBackend.figure_format = 'retina'
plt.rcParams["savefig.dpi"] = 600

tmatplotlib inline

Make folder to save plots
save_folder = "figures"
os.makedirs (save_folder, exist_ok=True)

1. Load data

Load the oracle object. See the previous notebook for the notes on how to prepare the oracle object.

oracle = co.load_ _hdf5("ORACLE OBJECT PATH")

Here, we load tutorial oracle object.
oracle = co.data.load_tutorial_oracle_object ()
oracle

Oracle object

Meta data
celloracle version used for instantiation: 0.6.11
n_cells: 2671
n_genes: 1999
cluster_name: louvain_annot
dimensional_reduction_name: X_draw_graph_fa
n_target_genes_in_TFdict: 21259 genes
n_regulatory_in_TFdict: 1093 genes
n_regulatory_in_both_TFdict_and_scRNA-seqg: 90 genes
n_target_genes_both_TFdict_and_scRNA-seqg: 1850 genes
k_for_knn_imputation: 66

Status

(continues on next page)

2.2. Tutorial

55

celloracle, Release 0.8.4

Gene expression matrix:
BaseGRN: Ready

PCA calculation: Done
Knn imputation: Done
GRN calculation for simulation:

Ready

Not finished

(continued from previous page)

In the previous notebook, we calculated GRNs. Now, we will use these GRNs for simulation. We import GRNs which

were saved in the Links object.
links =

Here,
links =

2. Make predictive models for simulation

co.load hdf5 ("YOUR LINK OBJCT PATH")

we load demo links object for the training purpose.
co.data.load_tutorial_links_object ()

We will fit ridge regression models again. This process takes less time than the GRN inference in the previous notebook

because we use already filtered GRN models.

links.filter_links ()

oracle.get_cluster_specific_TFdict_from_Links (links_object=1inks)
oracle.fit_GRN_for_simulation (alpha=10,

HBox (children=(FloatProgress (value=0.
HBox (children= (FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children= (FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children= (FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children= (FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children= (FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.
HBox (children= (FloatProgress (value=0.
HBox (children=(FloatProgress (value=0.

HBox (children=(FloatProgress (value=0.

use_cluster_specific_TFdict=True)

max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.
max=1999.

max=1999.

0),

HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTIML (value="")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="")))
HTML (value="")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))
HTML (value="'")))

56

Chapter 2. Contents

celloracle, Release 0.8.4

HBox (children=(FloatProgress (value=0.0, max=1999.0), HTML(value='")))
HBox (children=(FloatProgress (value=0.0, max=1999.0), HTML (value='"')))
HBox (children=(FloatProgress (value=0.0, max=1999.0), HTML (value='"')))
HBox (children=(FloatProgress (value=0.0, max=1999.0), HTML (value='"')))

3. in silico TF Perturbation analysis

Next, we will simulate the TF perturbation effects on cell identity to investigate its function and regulatory mechanism.
See the celloracle paper for the details and scientific premise on the algorithm.

In this notebook, we’ll show an example of the simulation; we’ll simulate knock-out of Gatal gene in the
hematopoiesis trajectory.

Previous studies have shown that Gatal is one of the TFs that regulates cell fate decisions in myeloid progenitors.
Additionally, Gatal has been shown to affect erythroid cell differentiation.

Here, we will analyze Gatal for the demonstration of celloracle; Celloracle try to recapitulate the previous findings of
Gatal gene above.

[8]: # Check gene expression
goi = "Gatal"
sc.pl.draw_graph (oracle.adata, color=[goi, oracle.cluster_column_name],
layer="imputed_count", use_raw=False, cmap="viridis")

Gatal louvain_annot

0.8 Ery_O GMP_2
ool J k.._" 3 J g)*h. - Ery_1 GMPI_0
‘II" - e Ery_2 ® GMPI_1
P 06 - Ery 3 Gran_0
’ Ery 4 e Gran_1
~ ~ Ery_5 e Gran_2
s 0 s Ery_6 ® Gran_3
-~ : - ® Ery7 ® MEPO

S ® Erys8 Mk_0

- e Ery9 Mo_0

0.2 :# ® GMPO Mo_1

..E.F.\.. GMP_1 Mo_2

0.0
FAL FAL
[9]: # Plot gene expression in histogram
sc.get.obs_df (oracle.adata, keys=[goi], layer="imputed_ count") .hist ()

plt.show ()

2.2. Tutorial 57

celloracle, Release 0.8.4

Gatal

1000

800

600

400

200

0.0 0.2 0.4 0.6 0.8

* You can use any gene expression value to enter in silico perturbations, but please avoid extremely high values that
are far from the natural gene expression range. The upper limit allowed is twice the maximum gene expression.

Here we simulate Gatal KO; we predict what happens to the cells if Gatal gene expression changed into 0.

[10]: # Enter perturbation conditions to simulate signal propagation after the perturbation.
oracle.simulate_shift (perturb_condition={goi: 0.0},
n_propagation=3)
Variability score of Gene Gatal is too low. Simulation accuracy may be poor with this
—gene.

* The steps above simulated global future gene expression shift after perturbation. This prediction is based on
iterative calculations of signal propagation within the GRN. Please look at our paper for more information.

* The next step is to calculate the probability of cell state transitions based on the simulation data. You can use
the transition probabilities between cells to predict how cells will change after a perturbation.

* This transition probability will be used later.

[11]: # Get transition probability
oracle.estimate_transition_prob (n_neighbors=200,
knn_random=True,
sampled_fraction=1)

Calculate embedding
oracle.calculate_embedding_shift (sigma_corr = 0.05)

4. Visualization
Caution: It is very important to find optimal scale parameter.

* We need to adjust the scale parameter. Please seek to find the optimal scale parameter that provides good
visualization.

* If you don’t see any vector, you can try the smaller scale parameter to magnify vector length. However, if you
see large vectors in the right panel, which is a randomized simulation, it means that the scale parameters are too
small.

58 Chapter 2. Contents

[12]:

[14]:

celloracle, Release 0.8.4

fig, ax = plt.subplots(l, 2, figsize=[15, 7])

scale = 25

Show quiver plot

oracle.plot_quiver (scale=scale, ax=ax[0])

ax[0] .set_title(f"Perturbation simulation results: {goi} KO")

Show quiver plot that was calculated with randomized GRN.
oracle.plot_quiver_random(scale=scale, ax=ax[l])

ax[1l].set_title(f"Perturbation simulation with randomized GRNs")

plt.show ()

Perturbation simulation results: Gatal KO Perturbation simulation with randomized GRNs

4.2. Vector field graph

We can visualize simulation result as a vector field graph. Single cell transition vectors are grouped by grid point.

4.2.1 Find parameters for n_grid and min_mass

n_grid: Number of grid point.

min_mass: Threshold value for the cell density The appropriate values for these parameters depends on the data.
Please find appropriate values as follows.

n_grid = 40 is a good point to start with.
n_grid = 40
oracle.calculate_p_mass (smooth=0.8, n_grid=n_grid, n_neighbors=200)

Please run oracle.suggest_mass_thresholds () to find appropriate min_mass parameter. It will give you
some examples.

Search for best min _mass.
oracle.suggest_mass_thresholds (n_suggestion=12)

2.2. Tutorial 59

celloracle, Release 0.8.4

min_mass: 1.7e-73 min_mass: 0.0036 min_mass: 0.0072 min_mass: 0.011

min_mass: 0.014 min_mass: 0.018 min_mass: 0.022 min_mass: 0.025

min_mass: 0.029 min_mass: 0.032 min_mass: 0.036 min_mass: 0.04

According to the results, the appropriate min_mass is around 0.011.

[15]: min_mass = 0.01
oracle.calculate_mass_filter (min_mass=min_mass, plot=True)

60 Chapter 2. Contents

celloracle, Release 0.8.4

Grid points selected

4.2.2 Plot vector fields

* Again, we need to adjust the scale parameter. Please seek to find the optimal scale parameter that provides
good visualization.

 If you don’t see any vector, you can try the smaller scale parameter to magnify vector length. However, if you
see large vectors in the right panel, which is a randomized simulation, it means that the scale parameters are too
small.

fig, ax = plt.subplots(l, 2, figsize=[15, 7])

scale_simulation = 0.5

Show quiver plot
oracle.plot_simulation_flow_on_grid(scale=scale_simulation, ax=ax[0])
ax[0] .set_title(f"Perturbation simulation results: {goi} KO")

Show quiver plot that was calculated with randomized GRN.
oracle.plot_simulation_flow_random_on_grid(scale=scale_simulation, ax=ax[1])

ax[1l].set_title(f"Perturbation simulation with randomized GRNs")

plt.show ()

2.2. Tutorial 61

celloracle, Release 0.8.4

Perturbation simulation results: Gatal KO

v

. .
v (SRS
v e > oo
P -»----*vv»"j’?i“ vvvvvv

4 3 Lt L
//7/'}:7:*‘ :‘» A
« AT n

A

i

vy

-
-

i

8 A
\ o
A
N
A\ A
R - v RS A
~— . N
- - EWE—w
-t
S

[19]: # Plot vector

field with cell cluster
fig, ax

plt.subplots (figsize=[8, 8])

oracle.plot_cluster_whole (ax=ax, s=10)

oracle.plot_simulation_flow_on_grid(scale=scale_simulation,

—background=False)

Perturbation simulation with randomized GRNs

ax=ax, show_

62

Chapter 2. Contents

celloracle, Release 0.8.4

Lt »] A7 LY . Y 4
b T een, . HERE "‘”:;h‘
« L E S P ® ‘.. R |

AT T T Ny -;igr‘a.,,gﬁ
Y s < i . CATAL
'y - A A
Py s
»

R
) .
o .\-
-l
VN

5. Compare simulation vector with development vectors

* As shown above, we can use celloracle’s simulation to infer how TF perturbations affect cell identity. The

simulation results are provided in the form of a vector field map.

 To interpret the results, it is necessary to take into account the direction of natural differentiation. We will

1.
2.
3.

compare the simulated perturbation vectors with the development vector. By comparing them, we can intuitively
understand how TF is involved in cell fate determination during development. This perspective is also important
for the estimation of experimental perturbation results

Here, we show an example to calculate the vector field of development using pseudotime gradient. In short,
the process is as follows.

Transfer pseudotime data into n x n grid point.
Calculate the 2D gradient of pseudotime to get vector field

Compare in silico TF perturbation vector field with development vector field by calculating inner product be-
tween these two vectors.

Also, there are many other options to get vector field of development flow from scRNA-seq data, and you
can select another option. For example, RNA velocity analysis is a good way to estimate the direction of cell
differentiation. Choose the method that best suits your data.

In the analysis below, we need to use pseudotime data. Pseudotime data is included in the demo data. If you try to
analyze your scRNA-seq data, please calculate pseudotime before starting this analysis.

2.2. Tutorial 63

celloracle, Release 0.8.4

We provide a tutorial notebook introducing how to calculate pseudotime. https://morris-lab.github.io/CellOracle.
documentation/tutorials/pseudotime.html

We use pseudotime data for an input of this analysis. Pleas calculate continuous pseudotime in advance. Please look
at another notebook for details on how to calculate pseudotime.

Visualize pseudotime
fig, ax = plt.subplots(figsize=[6,6])

sc.pl.embedding (adata=oracle.adata, basis=oracle.embedding_name, ax=ax, cmap="rainbow

n
",

color=["Pseudotime"])
Pseudotime
1.0
%
r |
¢ e
. Bl e - - 0.8
”‘I‘fo- ‘ :
\ - 0.6
| 1
)
2 . A N
><| 1 .a
“\\ “ L 0.4
i g
ek, ” %, 0.2
‘::::‘ o ST
ot %o ™
|
0.0
X_FA1

from celloracle.applications import Gradient_calculator

Instantiate Gradient calculator object
gradient = Gradient_calculator (oracle_object=oracle, pseudotime_key="Pseudotime")

We need to select n_grid and min_mass to make grid point. n_grid: Number of grid point.
We already know approproate values for them. Please set the same values as step 4.2.1 above.

gradient.calculate_p_mass (smooth=0.8, n_grid=n_grid, n_neighbors=200)
gradient.calculate_mass_filter (min_mass=min_mass, plot=True)

64 Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/pseudotime.html
https://morris-lab.github.io/CellOracle.documentation/tutorials/pseudotime.html

celloracle, Release 0.8.4

Grid points selected

Next, we will transfer pseudotime data into grid points. For this calculation we can chose two method.

e knn: K-Nearesr Neighbor regressor. You need to set number of neighbor. Please adjust n_knn searching for
best results.

gradient.transfer_data_into_grid(args={"method": "knn", "n_knn":50})

 polynomial: Polynomial regression using x-axis and y-axis of dimensional reduction space.
In general, this method will be more robust. Please use this method if k-nn does not work. n_poly is the number of
degree for the polynomial regression model. Please try to find appropriaten_poly searching for best results.

gradient.transfer_data_into_grid(args={"method": "polynomial", "n_poly":3})

[23]: gradient.transfer_data_into_grid(args={"method": "polynomial", "n_poly":3}, plot=True)
Pseudotime Pseudotime on grid
.]
%
» 3 B 4 o +H
2 an’ “
4 :
413 oo
o0
oo
: oo
\ e
> e
- o ®
A \ eoe
v 4+
‘\ sees
® o0
L »
L e e
% -3 oo
a - 299
i‘. > 'i - e -
haa ™Gl 1 oe
. ‘r T
oo

Calculate 2D vector map that represents the gradient of pseudotime. After the gradient calculation, the length of the

2.2. Tutorial 65

celloracle, Release 0.8.4

vector will be normalized automatically.

Please adjust scale parameter to adjust vector length.

[24]: # Calculate graddient
gradient.calculate_gradient ()

Show results
scale_dev = 40
gradient.visualize_results (scale=scale_dev, s=5)

Gradient of pseudotime Gradient of pseudotime Pseudotime +
(=Development flow) Development flow

Pseudotime Pseudotime on grid (Development flow)

[25]: # Visualize results
fig, ax = plt.subplots(figsize=[6, 6])
gradient.plot_dev_flow_on_grid(scale=scale_dev, ax=ax)

/
h
F Pl ﬂt\
- P R ER AN
P pEErES IEERE R RN
- o wwxwxxxr LA A B
- et A BVEL R Y
FE AN Amma Ty
FOEE VUL s > T2 iy
'y 'Y - e
F ¥ - - LSS N
f AW
‘ W
¥ Yy
V ADR
'! AR
'’ i
1 vy
y Vi
v VErs
v FEEK
s V¥ FEN
,//‘ PR
7 s
’
YANNM
' PN
¥ IEERE B R
4 IEBEE AR
¥ IRBEE RN
AR 00 TR I T T B W
(] LT T T
L NN -
rrw

[26]: # Save gradient object if you want.
#gradient.to_hdf5("../data/Paul_etal.celloracle.gradient")

We will use the inner product to compare the 2D vector map of perturb-simulation and development quantitatively. >
If you are not familiar with Inner product / Dot product, please see https://en.wikipedia.org/wiki/Dot_product
* The inner product represents the similarity between two vectors.

* Using the inner product, we compare the 2D vector field of perturbation simulation and development flow.

66 Chapter 2. Contents

https://en.wikipedia.org/wiki/Dot_product

celloracle, Release 0.8.4

¢ Inner product can be a positive value when two vectors are pointing in the same direction.

* Inner product can be a negative value when two vectors are pointing in the opposite direction.

vector map A

> = = = = = = = = =

inner product a * b
1 0.94 0.77 0.5 0.17 -0.17 -0.5 -0.77 -0.94 -1

* The length of vector also affects the absolute value of inner product value.

vector map A

= = = = = = = = = =5

vector map B

. . > »> » > l L - e
inner product a * b
0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1
° ° °

In summary, - a negative inner product means that perturbation might block differentiation. - a positive inner
product means that perturbation might promote differentiation.

from celloracle.applications import Oracle_development_module

Make Oracle development_module to compare two vector field
dev = Oracle_development_module ()

Load development flow
dev.load_differentiation_reference_data (gradient_object=gradient)

Load simulation result
dev.load_perturb_simulation_data (oracle_object=oracle)

Calculate inner produc scores
dev.calculate_inner_product ()
dev.calculate_digitized_ip(n_bins=10)

2.2. Tutorial 67

[28]

[29]

celloracle, Release 0.8.4

Let's visualize the results
dev.visualize_development_module_layout_0 (s=5,
scale_for_simulation=scale_simulation,

Cluster

Inner product of
Perturb simulation * Development flow

& g

Show inner product score

fig, ax =

inner product score

0.020

0.015

0.010

0.005

0.000

—0.005

—0.010

-0.015

-0.020

scale_for_pseudotime=scale_dev,

plt.subplots (figsize=[6,

s_grid=50,
vm=0.02)
Development flow
7
133
” P 4hh
4 Rl ERR RS AN
- S RIS
- TS wwwwwmvediiiny
JCONCSEGEGGGaENGGSEOMPIITIN
Prr e Anmmmeas JGascaatns
PR TAAAAR aew ———
FrEYTAA s —————
281 ~ TR
181 aas
81 RN
e
3
¥ a0y
/§ oy
I3 Ty
44 Ty
Vi Vrry
3 VEES
2 ViR
23 Vrran
231 vz
4
A
‘f}::::::\\\\
FrEd O ANy
FEEFEAANNY
[RERERRENN
1238 R DN
2R R E Rt
PIIL s a sk
e 0.020
] o0
o® o0 0,015
0 o
%o o °
oo N 0.010
0.005
0.000
-0.005
@ L4 Y 4 -0.010
[4 ° s °
“ ‘ o o
° ° -0.015
° o °
L] ° R '
e -0.020
0.2 0.4 0.6 0.8
pseudotime
s=50, ax=ax)

dev.plot_inner_ product_on_grid(vm=0.02,

inner product score

Perturb simulation

<o

| eI
- {H

hs
T
[
¢

3 6 7
Digitized_pseudotime

68

Chapter 2. Contents

celloracle, Release 0.8.4

[30]:

Show inner product score with perturbation simulation vector field

fig, ax = plt.subplots(figsize=[6, 6])
dev.plot_inner_ product_on_grid(vm=0.02,
dev.plot_simulation_flow_on_grid(scale=scale_simulation,

s=50, ax=ax)
show_background=False, ax=ax)

v

2.2. Tutorial

69

[32]:

celloracle, Release 0.8.4

6. Focus on a single development lineage to interpret the results in detail

So far, we have used Oracle_development_module to analyze the whole cell population. If you input the index
for the cells of interest, Oracle_development_module will analyze subset data.

In this example, let’s analyze MEP and its progenies.

Get cell index list for the cells of interest

clusters = ['Ery_0', 'Ery_1', 'Ery_2', 'Ery 3', 'Ery_ 4', 'Ery_5', 'Ery_6',
'"Ery_7', 'Ery 8', 'Ery 9', 'MEP_0', 'Mk_0']

cell_idx = np.where (oracle.adata.obs["louvain_annot"].isin(clusters)) [0]

Check
print (cell_idx)

[0 2 4 ... 2666 2668 2670]

dev = Oracle_development_module ()

Load development flow
dev.load_differentiation_reference_data(gradient_object=gradient)

Load simulation result

dev.load_perturb_simulation_data (oracle_object=oracle,
cell_idx_use=cell_idx, # Enter cell id 1ist
name="Lineage_ MEP" # Name of this cell group. You

—can enter arbitrary name.

Calculate stats
dev.calculate_inner_product ()
dev.calculate_digitized_ip(n_bins=10)

Let's visualize the results

dev.visualize_development_module_layout_0 (s=5,
scale_for_simulation=scale_simulation,
s_grid=50,
scale_for_pseudotime=scale_dev,
vm=0.03)

70 Chapter 2. Contents

celloracle, Release 0.8.4

Cluster Development flow Perturb simulation

ol E

R ——

=

Inner product of

Perturb simulation * Development flow
0.03

0.02

0.01

o o
s s
g S
& &
I
3 000 0.00 3 =
s s = =
5 5 =
2 2
£ IS L
3 -0.01 _0.01 .
¢ . "
38 . e g% o o N
—0.02 LS °] L
® ° -0.02 ’
-0.03 o®
-0.03
0.2 0.4 0.6 0.8 0 1 2 3 4 5 6 7 8 9
pseudotime Digitized_pseudotime

Prepare input data

scRNA-seq data preparation
Overview

In advance to CellOrale analysis, scRNA-seq data should be processed. Please prepare scRNA-seq data as an anndata
using scanpy.

Note: scanpy is a python toolkit for sScRNA-seq data analysis. If you are new to scanpy, pelase read the documentation
to learn it in advance.

* scanpy documentation: https://scanpy.readthedocs.io/en/stable/

¢ anndata documentation: https://anndata.readthedocs.io/en/latest/

2.2. Tutorial 71

https://scanpy.readthedocs.io/en/stable/
https://anndata.readthedocs.io/en/latest/

celloracle, Release 0.8.4

Warning: In this section, we intend to introduce an example of how to prepare the input data for CellOracle
analysis. This is NOT the CellOracle analysis itself. We do NOT use celloracle in this notebook.

A. scRNA-seq data preprocessing with scanpy

Please download notebooks from here . Or please click below to view the content.

Overview

This notebook will show an example of how to process scRNA-seq data using scRNA-seq data of hematopoiesis. (Paul,
F., Arkin, Y., Giladi, A., Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., et al. (2015). Transcriptional Heterogeneity and
Lineage Commitment in Myeloid Progenitors. Cell, 163(7), 1663—1677. http://doi.org/10.1016/j.cell.2015.11.013).

You can easily download this scRNA-seq data with a scanpy function.

Notebook file

Notebook file is available at CellOracle GitHub. https://github.com/morris-lab/CellOracle/blob/master/docs/
notebooks/03_scRINA-seq_data_preprocessing/scanpy_preprocessing_with_Paul_etal_2015_data.ipynb

Steps

We need to do following scRNA-seq processing.
1. Variable gene selection and normalization.

2. Log transformation. Although we need to do log-transformation, CellOracle also needs the raw gene expres-
sion value in later process. We keep raw count data in a layer of anndata.

3. Cell clustering.

4. Dimensional reduction. We need to prepare 2D embedding data. Make sure that the 2D embedding properly
represents the identity of the cell. Good Cell Oracle simulation results cannot be obtained if there is biologically
inappropriate embedded data.

Caution

* This notebook is intended to explain how to prepare the input data for CellOracle analysis. This is NOT the
CellOracle analysis itself. Also, this notebook does NOT use celloracle in this notebook.

* Instead, we use scanpy and anndata to process and store sScRNA-seq data. If you are new to these packages,
pelase read the documentation to learn them in advance.

* scanpy documentation: https://scanpy.readthedocs.io/en/stable/

* anndata documentation: https://anndata.readthedocs.io/en/latest/

72 Chapter 2. Contents

https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/03_scRNA-seq_data_preprocessing/scanpy_preprocessing_with_Paul_etal_2015_data.ipynb
http://doi.org/10.1016/j.cell.2015.11.013
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/03_scRNA-seq_data_preprocessing/scanpy_preprocessing_with_Paul_etal_2015_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/03_scRNA-seq_data_preprocessing/scanpy_preprocessing_with_Paul_etal_2015_data.ipynb
https://scanpy.readthedocs.io/en/stable/
https://anndata.readthedocs.io/en/latest/

celloracle, Release 0.8.4

0. Import libraries

import os

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import scanpy as sc

%matplotlib inline

%config InlineBackend.figure_format = 'retina'
plt.rcParams["savefig.dpi"] = 300
plt.rcParams|["figure.figsize"] = [6, 4.5]

1. Load data

Download dataset. You can change the code blow if you use another data.
adata = sc.datasets.paullb()

WARNING: In Scanpy 0.%, this returned logarithmized data. Now it returns non-
—~logarithmized data.

storing 'paull5_clusters' as categorical
Trying to set attribute "~ .uns' of view, making a copy.

2. Filtering

Only consider genes with more than 1 count
sc.pp.filter_genes(adata, min_counts=1)

3. Normalization

Normalize gene expression matrix with total UMI count per cell
sc.pp.normalize_per_cell (adata, key_n_counts='n_counts_all')

4. Identification of highly variable genes

This step is essential. Please do not skip this step.

By removing non-variable genes, we can reduce the calculation time during the GRN reconstruction
and simulation. Also, it will improve the accuracy of GRN inference by removing noisy genes. We
recommend using the top 2000~3000 variable genes.

Select top 2000 highly-variable genes

filter_result = sc.pp.filter_genes_dispersion(adata.X,
flavor='"cell_ranger',
n_top_genes=2000,
log=False)

(continues on next page)

2.2. Tutorial 73

[11]:

celloracle, Release 0.8.4

(continued from previous page)

Subset the genes
adata = adatal[:, filter_result.gene_subset]

Renormalize after filtering
sc.pp.normalize_per_cell (adata)

Trying to set attribute "~ .obs’ of view, making a copy.

5. Log transformation

* We will do log transformation and scaling because these are necessary for PCA, clustering, and differential gene
calculations.

* We also need non-transformed gene expression data for celloracle analysis. Thus, we need to keep gene ex-
pression data as a separate layer of anndata before the log transformation.

adata.layers["raw_count"] = adata.raw.X.copy ()

keep raw cont data before log transformation
adata.raw = adata
adata.layers["raw_count"] = adata.raw.X.copy ()

Log transformation and scaling
sc.pp.loglp (adata)
sc.pp.scale (adata)

6. PCA and find neighbors

This step is necessary to perform later dimensional reduction and clustering.

PCA
sc.tl.pca(adata, svd_solver='arpack')

Diffusion map
sc.pp.neighbors (adata, n_neighbors=4, n_pcs=20)

sc.tl.diffmap (adata)
Calculate neihbors again based on diffusionmap
sc.pp.neighbors (adata, n_neighbors=10, use_rep='X_diffmap')

7. Cell clustering

sc.tl.louvain (adata, resolution=0.38)

74 Chapter 2. Contents

[12]:

[14]:

[15]:

celloracle, Release 0.8.4

8. Dimensional reduction using PAGA and Force

Dimensional reduction is one of the most important parts of the sScRNA-seq analysis.Celloracle needs dimen-
sional reduction embeddings to simulate cell transition.

Please choose a proper algorithm for dimensional reduction for your scRNA-seq data so that the embedding
appropriately represents its developmental trajectory. We recommend using one of the following dimensional
reduction algorithms (or trajectory inference algorithms)

UMAP: https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.umap.html#scanpy.tl.umap
TSNE: https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.tsne.html#scanpy.tl.tsne
Diffusion map: https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap

Force-directed graph drawing: https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.draw_graph.html#
scanpy.tl.draw_graph

In this example, we use a workflow introduced in the scanpy trajectory inference tutorial. https:
//scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html This method is combination of three algo-
rithms:diffusion map, force-directed graph, PAGA.

Stepl: Calculate PAGA graph. PAGA data will be used for the initial status of force-directed graph calculation.

Step2: Force-directed graph calculation.

PAGA graph construction
sc.tl.paga (adata, groups='louvain')

plt.rcParams(["figure.figsize"] = [6, 4.5]

sc.pl.paga (adata)

20
21

7
f’fg I 9
P

),

: sc.tl.draw_graph (adata, init_pos='paga', random_state=123)

: sc.pl.draw_graph(adata, color='louvain', legend_loc='on data')

2.2. Tutorial 75

https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.umap.html#scanpy.tl.umap
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.tsne.html#scanpy.tl.tsne
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.draw_graph.html#scanpy.tl.draw_graph
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.draw_graph.html#scanpy.tl.draw_graph
https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html
https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html

celloracle, Release 0.8.4

louvain
21
V4 ;
2 13
1
~
< ey 3
- 8 19
* 9
20 14
,» 16
-:‘*' ’{
O 15
r4
22
FAl
9. Check data
[18]: plt.rcParams["figure.figsize"] = [4.5, 4.5]
[19]: markers = {"Erythroids":["Gatal", "K1fl1", "Gypa", "Hba-a2"],
"Megakaryocytes":["Itga2b", "Pbx1l", "Sdpr", "vwf"],
"Granulocytes":["Elane", "Cebpe", "Ctsg", "Mpo", "Gfil"],
"Monocytes": ["Irf8", "Csflr", "Ctsg", "Mpo"l],
"Mast_cells":["Cmal", "Gzmb", "Kit"],
"Basophils": ["Mcpt8", "Prss34"]
}
for cell_type, genes in markers.items():
print (f"marker gene of {cell_type}")
sc.pl.draw_graph(adata, color=genes, use_raw=False, ncols=2)

plt.show ()

76

Chapter 2. Contents

celloracle, Release 0.8.4

Gatal KIf1
5
f) é
2.5
’ s
a4
2.0
3 . 1.5
~ ~
i 2 g &~ 1.0
n 05
1
-*
0.0
0 —-0.5
2
FAL FAL
Gypa Hba-a2
8 6 4 8
’ Vs
;
5
6
a
5
~ o~
s 3 2 4
3
2
2
1
1
0 0
FAl FAL

2.2. Tutorial 77

celloracle, Release 0.8.4

ltga2b Pbx1
s ?
¢ ’
; 8
6
6
5
~N ~N
& 4 =
a4
3
2 2
1
]]
FAl FAl
Sdpr Vwf
16
?
’, 14 ’ 14
12 12
10 10
g 8 < 8
w w
6 6
4 4
2 2
0 0
FAL FAL
78 Chapter 2. Contents

celloracle, Release 0.8.4

Elane Cebpe
;
2.0
¢
6
15
5
1.0
4
~ o~
= o
0.5 3
0.0 2
1
-05
)
FAL FAL
Ctsg Mpo
15
15
1.0
4 1.0 g
0.5
2 0.5 3 0.0
w w
0.0 -05
-1.0
-05
-15
-1.0
-2.0
FAL FAL
Gfil
;
s 6
5
4
~
<
. 3
2
1
0
FAL
2.2. Tutorial 79

celloracle, Release 0.8.4

Irf8 Csflr
5
¢
5
¢ ’
a
a
3
3
~ o~
i =
2
2
1
1
0 0
FAL FAL
Ctsg Mpo
e
15
15
1.0
1.0
0.5
3 0.5 3 0.0
w w
00 -05
-1.0
-0.5
-15
-1.0
2.0
FAl FAL
80 Chapter 2. Contents

celloracle, Release 0.8.4

Cmal Gzmb
25
p 30 ’
20
25
20 15
™~ ~
< <
L w
15
10
10
5
5
0 0
FAl FAl
Kit
5
Vs
4
3
™~
<
w 2
1
0
FAL
Mcpt8 Prss34
16
16
¢ 1 ’ 14
12 1
10 10
™~ ~
= ° 2 8
6 6
4 4
2 2
0 0
FAl FAl
2.2. Tutorial 81

[207] :

[217:

[22]:

celloracle, Release 0.8.4

10. [Optional step] Make annotation for cluster

Based on the marker gene expression and previous reports, we will manually annotate each cluster.

sc.pl.draw_graph (adata, color=['louvain', 'paull5_clusters'],
legend_loc='on data')

louvain paull5 clusters
21 11DC
’
/ 16Neu
13

2 5

mﬁ =

~ ~ 1
< & 3 <
[8 w

&
20 Y4
16

22

FAl

Check current cluster name
cluster_list = adata.obs.louvain.unique ()
cluster_list

(5, 2, 12, 13, 0, ..., 6, 20, 14, 15, 21]
Length: 23
Categories (23, object): [5, 2, 12, 13, ..., 20, 14, 15, 21]

Make anottation dictionary
annotation = {"MEP":[5],
"Erythroids": [15, 10, 16, 9, 8, 14, 19, 3, 12,
"Megakaryocytes":[17, 2217,
"GMP":[11, 1],
"late_GMP" :[0],
"Granulocytes":[7, 13, 41,
"Monocytes":[6, 2],
"DC":[21],
"Lymphoid":[20]}

change dictionary format
annotation_rev = {}
for i in cluster_list:
for k in annotation:
if int (i) in annotationl[k]:
annotation_rev[i] = k

check dictionary
annotation_rev

FAl

18],

82

Chapter 2. Contents

[22]:

[23]:

[24]:

[25]:

celloracle, Release 0.8.4

{'5': 'MEP',
'2': '"Monocytes',
'12': 'Erythroids',
'13': 'Granulocytes',
'0': 'late_GMP',
'10': 'Erythroids',
'3': 'Erythroids',
'18': 'Erythroids',
'11': 'GMP',
'7': 'Granulocytes',
'8': 'Erythroids',
'22': 'Megakaryocytes',
'16': 'Erythroids',

"1': 'GMP',

'17': 'Megakaryocytes',
'4': 'Granulocytes',
'19': 'Erythroids',
'9': 'Erythroids',

'6': 'Monocytes',

'20': 'Lymphoid',

'14': 'Erythroids',
'15': 'Erythroids',
'21': 'DC'}

adata.obs["cell _type"] =

check results
sc.pl.draw_graph (adata,

color=["'cell type',

[annotation_rev[i]

legend_loc='on data')

for i in adata.obs.louvain]

'paullS5_clusters'],

paull5_clusters

cell_type
Dc
’
Gran cytes -~
s ate

Iate_GM&

FA2

FA2

FA1

11DC

FA1

We’ll make another annotation manually for each Louvain clusters.

sc.pl.draw_graph (adata,

color=["'louvain',

legend_loc='on data')

'cell type'l,

2.2. Tutorial

83

[26]:

[27]:

[28]:

celloracle, Release 0.8.4

louvain
21
/ ’
2 13

~

< b 3

= P 19

H
20 %4
216
-
- Ny 15
22
FAl

annotation_2 = {'5': 'MEP_O0',
'15': 'Ery_O0',
'10': 'Ery_ 1',
'16': 'Ery_2',
'14': 'Ery_3',
'9': 'Ery_4',
'8': 'Ery_5',
'19': 'Ery_6',
'3': 'Ery_ 7',
'12': 'Ery_8',
'18': 'Ery_9',
'17': 'Mk_O0',
'22': 'Mk_O0',
'11': 'GMP_O0',
"1': 'GMP_1',
'0': 'GMP1_0',
'7': 'Gran_O0',
'13': 'Gran_1',
'4': 'Gran_2',
'6': 'Mo_0',
'2': 'Mo_1',
'21': 'DC_O0',
'20': 'Lym_0'}

adata.obs["louvain_ annot"] =

Check result

sc.pl.draw_graph (adata,

[annotation_2[1]

legend_loc='on data')

color=["'louvain_annot',

cell_type
’
Granulpcytes
s
% late_GME_
- r

FA1

for i in adata.obs.louvain]

'cell type'l,

84

Chapter 2. Contents

[29]:

[29]:

[30]:

[31]:

celloracle, Release 0.8.4

louvain_annot cell_type
D@ O nc
’
Gran_2
Gran cytes
Mo_1 Gran_1
Mo s
- _Gran_0
3 GMPI 0 3 late_GMP_
w w
] ¢
]
g Lym_0O
G
Megak:
s
FA1 FA1

11. [Optional step] Subset cells

In this tutorial, we are using scRNA-seq data of hematopoiesis. In the latter part, we will focus on the cell fate decision
in the myeloid lineage. So we will remove non-myeloid cell cluster; DC and Lymphoid cell cluster.

adata.obs.cell_type.unique ()

[MEP, Monocytes, Erythroids, Granulocytes, late_GMP, GMP, Megakaryocytes, Lymphoid,
—DC]

Categories (9, object): [MEP, Monocytes, Erythroids, Granulocytes, ..., GMP
—Megakaryocytes, Lymphoid, DC]

o

cell of_interest = adata.obs.index[~adata.obs.cell_type.isin(["Lymphoid", "DC"])]
adata = adatalcell_of_interest, :]

check result
sc.pl.draw_graph (adata, color=['louvain_annot', 'cell type'l],
legend_loc='on data')

2.2. Tutorial 85

celloracle, Release 0.8.4

louvain_annot

Gran_2

Mo 1 Gran_1
Mo_0 Ery 9
T _Gran_0 Eryd

GMPI 0

FA2
e o

FA1

12. Save processed data

: adata.write_hbad ("data/Paul_etal_15.h5ad")

B. scRNA-seq data preprocessing with Seurat

R notebook ... comming in the future update.

FA2

cell_type

Gran
s

Iate_GMg.

’

cytes

FA1

Note: If you use Seurat for preprocessing, you need to convert the scRNA-seq data (Seurat object) into anndata
to analyze the data with celloracle. celloracle has a python API and command-line API to convert a Seurat
object into an anndata. Please go to the documentation of celloracle’s API documentation for more information.

86

Chapter 2. Contents

celloracle, Release 0.8.4

Pseudotime calculation

To interpret the celloracle simulation results, it is important to compare the simulated cell identity shift vector with the
direction of natural development. We leverage pseudotime data to create development vector field.

Please download notebooks from here . Or please click below to view the content.

Overview
Aim

To interpret the celloracle simulation results, it is essential to compare the direction of the perturbation effect with
natural differentiation. By comparing them, you can intuitively understand how TF is involved in cell fate determi-
nation during development. This perspective is also needed when estimating experimental perturbation results using
celloracle simulations.

Method summary

For that purpose, we will introduce how to calculate the direction of differentiation using “pseudotime estimation” and
“gradient calculation”. Here’s an overview of how to do this:

1. Calculate the pseudotime using the diffusion pseudotime method (dpt).

2. Transfer pseudotime data to grid points

3. Calculate the 2D gradient vector field using the pseudotime on the grid points
4

. Compute the inner product value between the 2D gradient vector and the celloracle simulation vector to compare
the simulated cell identity shift direction with the development direction.

In this notebook, we will do stepl: pseudotime calculation. The pseudotime calculation part consists of these
steps below. 1. Set lineage information and split the cells into several lineage brahches 2. Set root cells manually 3.
Calculate pseudotime with dpt algorithm. 4. Re-aggregate scRNA-seq data into one data

Custom class / object

Pseudotime_calculator: Thisis aclass for the pseudotime calculation. This class help us calculate pseudotime
from scRNA-seq data. We need to specify a root cell. Also, scRNA-seq need to have a diffusion map >Under the hood,
Pseudotime_calculator uses “dpt” algorithm. For more information of dpt algorithm and root cell, please look at the
scanpy web documentation. https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.dpt.html#scanpy.tl.dpt

Data

Pseudo-time calculation requires preprocessed sScRNA-seq data in anndata format. You need to do neighbor calcula-
tion and diffusion map calculation in advance. If you have processed the scRNA-seq data according to our tutorial
(link), these calculations have already been performed. - Neighbor calculation: https://scanpy.readthedocs.io/en/stable/
generated/scanpy.pp.neighbors.html#scanpy.pp.neighbors - Diffusion map calculation: https://scanpy.readthedocs.io/
en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap

2.2. Tutorial 87

https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/05_simulation/Pseudotime_calculation_with_Paul_etal_2015_data.ipynb
https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.dpt.html#scanpy.tl.dpt
https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.neighbors.html#scanpy.pp.neighbors
https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.neighbors.html#scanpy.pp.neighbors
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap

celloracle, Release 0.8.4

Install additional python package

This notebook we recommend using another python package, plotly.
Please install plot 1y in advance.

pip install plotly

Plotly is a toolkit for interactive visualization. We recommend using plotly to pick up root cells in this

notebook. For more information, please look at plotly web site. https://plotly.com

Caution

Here, we will introduce an example of a pseudotime calculation method using the diffusion pseudotime method. This
is NOT celloracle analysis itself. If you want to use another different algorithm for the pseudotime calculation, you

can use anything.

0. Import libraries

0.1. Import public libraries

import copy
import glob
import time
import os
import shutil
import sys

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import scanpy as sc

import seaborn as sns

from tgdm.notebook import tgdm

#import time

0.2. Import our library

import celloracle as co
from celloracle.applications import Pseudotime_calculator
co.__version_

'0.7.0"

88

Chapter 2. Contents

https://plotly.com

celloracle, Release 0.8.4

0.3. Plotting parameter setting

#plt.rcParams|["font.family"] = "arial"
plt.rcParams|["figure.figsize"] = [5,5]

$config InlineBackend.figure_format = 'retina'
plt.rcParams|["savefig.dpi"] = 300

$matplotlib inline

1. Load data

We can add pseudotime calculation to an oracle object or to anndata.
* If you have oracle object, please run 1.1.[Option1] Load oracle data.

« If you have not made oracle object yet and want to calculate pseudotime using anndata, please run 1.2.[Option2]
Load anndata.

In this notebook, we load demo oracle object to add pseudotime.

1.1. [Option1] Load oracle data

Load demo scRNA-seq data.
oracle = co.data.load_tutorial_oracle_object ()

Instantiate pseudotime object using oracle object.
pt = Pseudotime_calculator (oracle_object=oracle)

1.2. [Option2] Load anndata

Load demo scRNA-seq data.
adata = co.data.load_Paul2015_data()

Instantiate pseudotime object using anndata object.
pt = Pseudotime_calculator (adata=adata,

obsm_key="X_draw_graph_fa", # Dimensional reduction data,,
—name

cluster_column_name="louvain_annot" # Clustering data name

)

2. Pseudotime calculation
2.1. Add lineage information

We will calculate pseudotime for each lineage. We need to set lineage information first.

2.2. Tutorial 89

celloracle, Release 0.8.4

2.1.1 Check clustering unit

print ("Clustering name: ", pt.cluster_column_name)
print ("Cluster 1list", pt.cluster_list)

Clustering name: louvain_annot

Cluster list ['Ery_O', 'Ery_1', 'Ery_2', 'Ery_3', 'Ery_4', 'Ery_5', 'Ery_6', 'Ery_7',
—~'Ery_8', 'Ery_9', 'GMP_O', 'GMP_1', 'GMP_2', 'GMP1_0', 'GMP1_1', 'Gran_0', 'Gran_1',
— 'Gran_2', 'Gran_3', 'MEP_O0', 'Mk_0', 'Mo_0', 'Mo_1', 'Mo_2']

Check data
pt.plot_cluster (fontsize=8)

Ery 0
Ery_1
Ery 2
Ery 3
Ery_4
louvain_annot Ery 5
Ery_ 6
Ery 7
Ery 8
Ery_9

R e, P
WJ . GMP_1
GMP_2

GMPI_0

» GMPL1

Gran_0
Gran_1
Gran_2
Gran_3
MEP_O
Mi_0
Mo_0
. ¢ Mo_1
* Mo 2

e 0 ° @ @

4

2.1.2. Define llineage

We will make lineage annotation on the scRNA-seq data. For example, this scRNA-seq data include roughly two
lineages: megakaryocytes-erythroid (ME) lineage and granulocytes-monocyte (GM) lineage.

To get better pseudotime information, calculate the pseudotime for each cell lineage individually. Then, all pseudotime
information of each lineage are merged into one.

Here is an example of setting lineage information. Lineage structure and number may vary depending on the data.
Please adjust them on demand.

These cluster can be classified into either MEP lineage or GMP lineage

clusters_in_ME_lineage = ['Ery_0', 'Ery_1', 'Ery_2', 'Ery_3', 'Ery_4', 'Ery_ 5',
'Ery_6', 'Ery_7', 'Ery_8', 'Ery_9', 'MEP_0', 'Mk_0']
clusters_in_GM_lineage = ['GMP_O0O', 'GMP_1', 'GMP_2', 'GMP1_0', 'GMP1_1', 'Gran_O0',

'Gran_1', 'Gran_2', 'Gran_3', 'Mo_0', 'Mo_1', 'Mo_2']

Make dictionary
lineage_dictionary = {"Lineage_ME": clusters_in_ME_lineage,
"Lineage_GM": clusters_in_GM_lineage}

(continues on next page)

90 Chapter 2. Contents

celloracle, Release 0.8.4

Inpur lineage information into pseudotime object
pt.set_lineage (lineage_dictionary=lineage_dictionary)

Visualize lineage information
pt.plot_lineages|()

Lineage ME

2.2. Add root cell information

(continued from previous page)

The pseudotime calculation with dpt requires to input root cell. We will manyally estimate root cell for each lineage.

Please read documentation (https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.dpt.html#scanpy.tl.dpt) to find de-

tailed information about dpt algorithm and root cells

2.2. Tutorial

91

https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.dpt.html#scanpy.tl.dpt

celloracle, Release 0.8.4

2.2.1. (optional) Interactive visualization of cell name

This notebook we recommend using another python package, plotly.
Please install plot 1y in advance.
pip install plotly

Plotly is a toolkit for interactive visualization. We recommend using plotly to pick up root cells in this
notebook. For more information, please look at plotly web site. https://plotly.com

Using plotly, we can visualize cell name interactively. It helps us pick up a root cell. This is an example image.
I8a7¢d389dd734041ab658fcd7c93ee29]

https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/screenshot_01.png
Show interactive plot using plotly. Please make sure you installed plotly.

try:
import plotly.express as px
def plot (adata, embedding_key, cluster_column_name) :
embedding = adata.obsm[embedding_key]
df = pd.DataFrame (embedding, columns=["x", "y"])

df ["cluster"] = adata.obs[cluster_column_name] .values

df["label"] = adata.obs.index.values

fig = px.scatter(df, x="x", y="y", hover_name=df["label"], color="cluster")
fig.show ()

plot (adata=pt.adata,
embedding_key=pt.obsm_key,
cluster_column_name=pt.cluster_column_name)
except:
print ("Found error. Did you install plotly? Please read the instruction above.")

2.2.2. Select root cell for each lineage

Estimated root cell name for each lineage
root_cells = {"Lineage_MEP": "1539", "Lineage_ GMP": "2244"}
pt.set_root_cells(root_cells=root_cells)

2.2.3. Visualize root cells

Check root cell and lineage
pt.plot_root_cells()

92 Chapter 2. Contents

https://plotly.com
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/screenshot_01.png

celloracle, Release 0.8.4

Lineage_MEP

@ oot cell

Lineage GMP

@ root cell

2.3. Pseudotime calculation

You need to do neighbor calculation and diffusion map calculation in advance. If you have processed the scRNA-seq
data according to our tutorial, these calculations have already been performed. - Neighbor calculation: https://scanpy.
readthedocs.io/en/stable/generated/scanpy.pp.neighbors.html#scanpy.pp.neighbors - Diffusion map calculation: https:
/Iscanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap

2.2. Tutorial 93

https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.neighbors.html#scanpy.pp.neighbors
https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.neighbors.html#scanpy.pp.neighbors
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap
https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.diffmap.html#scanpy.tl.diffmap

[36]:

[14]:

celloracle, Release 0.8.4

2.3.1. Check diffusion map

Check diffusion map data.
"X_diffmap" in pt.adata.obsm

True

Calculate diffusion map if your adata does not have diffusion map data

sc.pp.neighbors (pt.adata, n_neighbors=30)
sc.tl.diffmap (pt.adata)

Diffusion maps can be calculated in the anther dimensionality reduction space. Please adjust this parameter “use_rep”

to get another better results if you have a issue in the following calculation.

sc.pp.neighbors (pt.adata, n_neighbors=30, use_rep=)
sc.tl.diffmap (pt.adata)

2.3.2. Calculate pseudotime

Calculate pseudotime
pt.get_pseudotime_per_each_lineage ()

Check results
pt.plot_pseudotime (cmap="rainbow")

Pseudotime_Lineage_MEP

“

Y,..‘

\..,,, .
L2

S g - }:kc a‘ﬂ

£s 2o o oo

A s
~ s, -
w‘:&lﬂ. ;'p‘:‘ byl TR

94

Chapter 2. Contents

celloracle, Release 0.8.4

Pseudotime_Lineage GMP

,-UNP‘ﬁ”J" - -~
»
-
\
LY
«%\
VN
Pseudotime
L Y

A ©)
o oy

s 4

Pseudotime data is stored in the pt . adata.obs.Pseudotime

[41]: # Check result

pt.adata.obs[["Pseudotime"]] .head ()
[417]: Pseudotime
index
0 0.175565
1 0.712654
2 0.953920
3 0.642302
4 0.951093
2.2. Tutorial 95

celloracle, Release 0.8.4

3. Save data

3.1. If you started calculation with an oracle object

[17]:

oracle.adata.obs = pt.adata.obs

Save updated oracle object

oracle.to_hdf5 (FILE_PATH)

3.2. If you started calculation with anndata

Add calculated pseudotime data to the oracle object

[1: # Add calculated pseudotime data to the oracle object

#adata.obs = pt.adata.obs

Save updated anndata object
#adata.write h5ad (FILE_PATH)

Base GRN input data preparation

Overview

There are several options for CellOracle base-GRN construction.

workflow.

Option 1:
scATAC-seq data

to get co-accessible

Cicero analysis
peak information

Aactive gene regulatory element data

+ Open accesible genomic region
data
« Cis-regulatory connection data

* TSS annotation

Active promoter / enhancer
genomic region data.

* TF bindig motif scan

Option 2:

Bulk ATAC-seq data

TSS annotation,
Promoter annotation

y

Active promoter / enhancer
genomic region data.

i TF bindig motif scan

Here is the illustration of base-GRN construction

Option 3:

Promoter geonmic
region data:
BED file

TF bindig motif scan

\

Base GRN: Potential TF-target gene connection lists

¢ In this documentation, we introduce details of optionl and option2.

Option 4:

TF- target gene
list

* Option3 uses promoter database for the input of base-GRN construction. We provide pre-built promoter base-
GRN for 10 species. You can load this base GRN using celloracle data loading function.

* In option4, any TF-target gene list can be used as a base-GRN. Here is an example notebook [link].

96

Chapter 2. Contents

celloracle, Release 0.8.4

Option1. Data preprocessing of scATAC-seq data

If you have scATAC-seq data, you can use scATAC-seq data to obtain the accessible promoter/enhancer DNA se-
quence. To prepare input data of base-GRN construction, we need to get the accessible promoter/enhancer DNA
sequence from scATAC-seq data.

Here, we introduce an example method to extract active promoter / enhancer peaks from scATAC-seq data using
Cicero.

Note: Cicero is a R package for scATAC-seq data analysis. It can pick up distal cis-regulatory elements in scATAC-
seq data.

Warning:
* Here, we intend to introduce an example of how to prepare input data. This is not CellOracle analysis. We
do NOT use celloracle in this step.

* This is just an example of data preparation step, you can analyze your data with Cicero in a different way if
you are familiar with Cicero. If you have a question about Cicero, please read the documentation of Cicero
for the detailed usage.

* If you have a favorite algorithm / software for scATAC-data analysis, you can use totally different software
to pick up gene expression regulatory elements.

Step1. scATAC-seq analysis with Cicero

The jupyter notebook file is available here . The R notebook file is available here .

Or click below to see the contents.

Overview

This notebook is an example R script on how to prepare the input data for building a CellOracle-based GRN. We aim
to extract cis-regulated connections between scATAC-seq peaks. Here, we will introduce the data preparation method
using Cicero.

Notebook file

Notebook file is available at CellOracle GitHub. We have jupyter notebook (with R kernel) and R notebook. The
contents are same. Please download and run either one.

* R notebook: https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_
processing/option1_scATAC-seq_data_analysis_with_cicero/01_atacdata_analysis_with_cicero_and_
monocle3.Rmd

2.2. Tutorial 97

https://cole-trapnell-lab.github.io/cicero-release/
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/01_atacdata_analysis_with_cicero_and_monocle3.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/01_atacdata_analysis_with_cicero_and_monocle3.Rmd
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/01_atacdata_analysis_with_cicero_and_monocle3.Rmd
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/01_atacdata_analysis_with_cicero_and_monocle3.Rmd
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/01_atacdata_analysis_with_cicero_and_monocle3.Rmd

celloracle, Release 0.8.4

CAUTION:

* This notebook is intended to explain how to prepare the input data for CellOracle analysis. This is NOT the
CellOracle analysis itself. Also, this notebook does NOT use celloracle in this notebook.

* Here, we use Cicero to process SCATAC-seq data. If you are new to this packages, pelase read the documen-
tation to learn them in advance.

* Cicero documentation: https://cole-trapnell-lab.github.io/cicero-release/docs_m3/

0. Import library

library (cicero)
library (monocle3)

1. Download data

This tutorial uses fetal brain acATAC-seq data obtained from a 10x genomics database. If you want to analyze your
scATAC-seq data, you do not need to download these data.

You can download the demo file by running the following command: If the file download fails, please manually
download and unzip the data. http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_v1_E18_brain_fresh_5Sk/atac_
v1_E18_brain_fresh_5k_filtered_peak_bc_matrix.tar.gz

Create folder to store data
dir.create ("data")

Download demo dataset from 10x genomics

download.file(url = "http://cf.lOxgenomics.com/samples/cell-atac/1.1.0/atac_vl1_E18_
—brain_fresh_5k/atac_vl_E18_brain_fresh_5k_filtered_peak_ bc_matrix.tar.gz",
destfile = "data/matrix.tar.gz")

Unzip data
system("tar —-xvf data/matrix.tar.gz -C data")

You can substitute the data path below with the data path of your sScATAC data.
data_folder <- "data/filtered_peak_bc_matrix"

Create a folder to save results
output_folder <- "cicero_output"
dir.create (output_folder)

2. Load data and make Cell Data Set (CDS) object

Read in matrix data using the Matrix package

indata <- Matrix::readMM(paste((data_folder, "/matrix.mtx"))
Binarize the matrix

indata@x[indata@x > 0] <- 1

Format cell info

cellinfo <- read.table(paste0(data_folder, "/barcodes.tsv"))
row.names (cellinfo) <- cellinfo$V1

names (cellinfo) <— "cells"

(continues on next page)

98 Chapter 2. Contents

https://cole-trapnell-lab.github.io/cicero-release/docs_m3/
http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_v1_E18_brain_fresh_5k/atac_v1_E18_brain_fresh_5k_filtered_peak_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_v1_E18_brain_fresh_5k/atac_v1_E18_brain_fresh_5k_filtered_peak_bc_matrix.tar.gz

celloracle, Release 0.8.4

(continued from previous page)

Format peak info

peakinfo <- read.table (pastel (data_folder, "/peaks.bed"))

names (peakinfo) <- c("chr", "bpl", "bp2")

peakinfo$Ssite_name <- paste (peakinfo$chr, peakinfoSbpl, peakinfo$bp2, sep="_")
row.names (peakinfo) <- peakinfoS$site_name

row.names (indata) <- row.names (peakinfo)
colnames (indata) <- row.names (cellinfo)

Make CDS
input_cds <- suppressWarnings (new_cell_data_set (indata,
cell_metadata = cellinfo,

gene_metadata = peakinfo))
input_cds <- monocle3::detect_genes (input_cds)

#Ensure there are no peaks included with zero reads
input_cds <- input_cds[Matrix::rowSums (exprs (input_cds)) != 0,]

3. Qauality check and Filtering

Visualize peak_count_per. _cell
hist (Matrix::colSums (exprs (input_cds)))

Histogram of Matrix::colSums(exprs(input_cds))

o —
o _
0
—
(=)
o _|
o
—
>
Q
c
1]
3
o
Q —
[
o
e -
n
o -

[T I T T 1
0 5000 10000 15000 20000 25000

Matrix::colSums(exprs(input_cds))

2.2. Tutorial 99

celloracle, Release 0.8.4

Filter cells by peak_ count

Please set an appropriate threshold values according to your data
max_count <- 15000

min_count <- 2000

input_cds <- input_cds[,Matrix::colSums (exprs (input_cds)) >= min_count]
input_cds <- input_cds[,Matrix::colSums (exprs (input_cds)) <= max_count]

4. Process cicero-CDS object

Data preprocessing
set.seed (2017)

input_cds <- detect_genes (input_cds)
input_cds <- estimate_size_factors (input_cds)
input_cds <- preprocess_cds (input_cds, method = "LSI")

Dimensional reduction with umap

input_cds <- reduce_dimension (input_cds, reduction_method = 'UMAP',
preprocess_method = "LSI")

umap_coords <- reducedDims (input_cds) SUMAP

cicero_cds <- make_cicero_cds (input_cds, reduced_coordinates = umap_coords)

Save cds object if you want
#saveRDS (cicero_cds, pastel (output_folder, "/cicero_cds.Rds"))

Overlap QC metrics:

Cells per bin: 50

Maximum shared cells bin-bin: 44

Mean shared cells bin-bin: 0.84960828849071
Median shared cells bin-bin: 0

5. Load reference genome information

To run cicero, you need to get a genomic coordinate file that contains the length of each chromosome. You can
download the mm10 genomic information with the following command.

If your scATAC-seq data was generated with another reference genome, you need to get the genome coordinate file
for the reference genome you used. See the Cicero documentation for more information.

https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#installing-cicero

!!Please make sure that the reference genome information below match the reference,,
—genome of your ScATAC-seq data.

If your scATAC-seq uses mml0 reference genome, you can read chromosome length file,,
—with the following command.

download.file(url = "https://raw.githubusercontent.com/morris—-lab/CellOracle/master/
—docs/demo_data/mml10_chromosome_length.txt",

(continues on next page)

100 Chapter 2. Contents

https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#installing-cicero

celloracle, Release 0.8.4

(continued from previous page)

destfile = "./mml10_chromosome_length.txt")
chromosome_length <- read.table("./mml0_chromosome_length.txt")

For mm9 genome, you can use the following command.
#data ("mouse.mm9.genome")
#chromosome_length <- mouse.mm9.genome

For hgl9 genome, you can use the following command.

#data ("human.hgl9.genome")
#chromosome_length <- mhuman.hgl9.genome

6. Run Cicero

: # Run the main function

conns <- run_cicero(cicero_cds, chromosome_length) # Takes a few minutes to run

Save results if you want
#saveRDS (conns, pastel (output_folder, "/cicero connections.Rds"))

Check results
head (conns)

Peak1l Peak2 coaccess
<chr> <fct> <dbl>
chr10_100006139_100006389 chr10_99774288_99774570 -0.003546179
chr10_100006139_100006389 chr10_99825945_99826237 -0.027536333
chr10_100006139_100006389 chr10_99830012_99830311 0.009588013
chr10_100006139_100006389 chr10_99833211_99833540 -0.008067111
chr10_100006139_100006389 chr10_99941805_99941955 0.000000000
chr10_100006139_100006389 chr10_100015291_100017830 -0.015018099

A data.frame: 6 x 3

N bk W=

7. Save results for the next step

: all_peaks <- row.names (exprs (input_cds))

write.csv(x = all_peaks, file = pastel (output_folder, "/all peaks.csv"))
write.csv(x = conns, file = pasteO (output_folder, "/cicero_connections.csv"))

Please go to next step: TSS annotation

https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#step2-tss-annotation

2.2. Tutorial 101

https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#step2-tss-annotation

celloracle, Release 0.8.4

Step2. TSS annotation

We can get active promoter / enhancer peaks in stepl above. Next, we will make gene annotations for these peaks.

The jupyter notebook file is available here .

Or click below to see the contents.

Overview

In this notebook, we will make TSS annotation in the Cicero coaccessible peak data to get input data of base-GRN
construction. - First, we pick up peaks around the transcription starting site (TSS). - Second, we merge cicero data
with the peaks around TSS. - Then we remove peaks that have a weak connection to TSS peak so that the final product
includes TSS peaks and peaks that have a strong connection with the TSS peaks. We use this information as an active

promoter/enhancer elements.

Notebook file

Notebook file is available at CellOracle GitHub. https://github.com/morris-lab/CellOracle/blob/master/docs/
notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/02_preprocess_peak_

data.ipynb

0. Import libraries

: import pandas as pd

import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

import seaborn as sns

import os, sys, shutil, importlib, glob
from tgdm.notebook import tgdm

from celloracle import motif_analysis as ma
import celloracle as co

co.__version_

'0.8.3"

%config InlineBackend.figure_format = 'retina'
plt.rcParams|['figure.figsize'] = [6, 4.5]
plt.rcParams|["savefig.dpi"] = 300

102

Chapter 2. Contents

https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/02_preprocess_peak_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/02_preprocess_peak_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/02_preprocess_peak_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option1_scATAC-seq_data_analysis_with_cicero/02_preprocess_peak_data.ipynb

celloracle, Release 0.8.4

1. Load scATAC peak data and peak connection data made with cicero

In this notebook, we explain how to process Cicero output. Please look at the previous step to know
how to get this data yourself. https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#
step1-scatac-seq-analysis-with-cicero

Here, we use preprosessed Cicero data that were made from scATAC-seq data.

You can download the demo file by running the following command: If the file download fails, please manually
download and unzip the data.

https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/all_peaks.csv
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/cicero_connections.csv

Download file.

'wget https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/
—all_peaks.csv

'wget https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/
—cilcero_connections.csv

If you are using macOS, please try the following command.

#!curl -O https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_
—~data/all_peaks.csv

#!curl -0 https://raw.githubusercontent.com/morris—lab/CellOracle/master/docs/demo_
—data/cicero_connections.csv

--2021-07-07 21:42:05-- https://raw.githubusercontent.com/morris—lab/CellOracle/
—master/docs/demo_data/all_peaks.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, ,

-185.199.109.133, 185.199.108.133,

Connecting to raw.githubusercontent.com (raw.githubusercontent.com) [185.199.110.133]:
—443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 2940392 (2.8M) [text/plain]

Saving to: ‘all_peaks.csv’

all_peaks.csv 100%[> 2.80M --.-KB/s in 0.05s

2021-07-07 21:42:06 (56.3 MB/s) - ‘all_peaks.csv’ saved [2940392/2940392]

--2021-07-07 21:42:06-- https://raw.githubusercontent.com/morris—-lab/CellOracle/
—master/docs/demo_data/cicero_connections.csv

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133,
—185.199.109.133, 185.199.108.133,

Connecting to raw.githubusercontent.com (raw.githubusercontent.com) [185.199.110.133]:
—~443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 22749615 (22M) [text/plain]

Saving to: ‘cicero_connections.csv’

cicero_connections. 100%([==>] 21.70M 78.7MB/s in 0.3s

2021-07-07 21:42:06 (78.7 MB/s) - ‘cicero_connections.csv’ saved [22749615/22749615]

Load scATAC-seq peak list.
peaks = pd.read_csv("all peaks.csv", index_col=0)

(continues on next page)

2.2. Tutorial 103

https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#step1-scatac-seq-analysis-with-cicero
https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#step1-scatac-seq-analysis-with-cicero
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/all_peaks.csv
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/cicero_connections.csv

celloracle, Release 0.8.4

(continued from previous page)

peaks = peaks.x.values
peaks

array (['chrl0_100006139_100006389"', 'chrl10_100015291_100017830",
'chrl10_.100018677_100020384"', ..., 'chrY 90804622_90805450",
'chrY 90808626_90809117"', 'chrY 90810560_90811167"'], dtype=object)

Load cicero coaccess score.
cicero_connections = pd.read_csv("cicero_connections.csv", index_col=0)
cicero_connections.head ()

Peakl Peak2 coaccess
chr10_100006139_100006389 «chrl10_99774288_99774570 -0.003546
chr10_100006139_100006389 chrl10_99825945_99826237 -0.027536
chrl10_100006139_100006389 <chrl10_99830012_99830311 0.009588
chrl10_100006139_100006389 <chrl10_99833211_99833540 -0.008067
chr10_100006139_100006389 <chr10_99941805_99941955 0.000000

o W N

2. Make TSS annotation

If your scATAC-seq data was generated with mm10 reference genome, please set ref_genome="mm10".
You can check supported reference genome using ma . SUPPORTED_REF_GENOME
If your reference genome is not in the list, please send a request to us through github issue page.

ma . SUPPORTED_REF_GENOME

species ref_genome provider

0 Human hg38 UcCscC
1 Human hgl9 UcCsc
2 Mouse mm10 UucscC
3 Mouse mm9 ucscC
4 S.cerevisiae sacCer2 uUcscC
5 S.cerevisiae sacCer3 Uucsc
6 Zebrafish danRer?7 ucscC
7 Zebrafish danRerl0 ucscC
8 Zebrafish danRerll ucsc
9 Xenopus xenTro?2 ucsc
10 Xenopus xenTro3 ucscC
11 Rat rnd UucscC
12 Rat rn5 ucscC
13 Rat rné ucscC
14 Drosophila dm3 UcCscC
15 Drosophila dm6 ucsc
16 C.elegans ceb ucscC
17 C.elegans cel0l ucsc
18 Arabidopsis TAIR10 Ensembl
19 Chicken galGal4d ucsc
20 Chicken galGalb UCscC
21 Chicken galGalé6 UucCscC
22 Guinea_Pig Cavpor3.0 Ensembl

##!! Please make sure to specify the correct reference genome here
tss_annotated = ma.get_tss_info (peak_str_list=peaks, ref_genome="mml0")

(continues on next page)

104 Chapter 2. Contents

[10]:

[11]:

[11]:

celloracle, Release 0.8.4

(continued from previous page)
Check results
tss_annotated.tail ()

que bed peaks: 86935
tss peaks in que: 17238

chr start end gene_short_name strand
17233 chrl 55130650 55132118 Mob4 +
17234 chr6 94499875 94500767 Slc25a26 +
17235 chrl9 45659222 45660823 Fbxw4 -
17236 chrl2 100898848 100899597 Gpr68 -
17237 chr4 129491262 129492047 Fam229a -

3. Integrate TSS info and cicero connections

he output file after the integration process has three columns: ["peak_id", "gene_short_name",
"coaccess"].

» “peak_id” is either the TSS peak or the peaks that have a connection with the TSS peak.
» “gene_short_name” is the gene name that associated with the TSS site.

* “coaccess” is the co-access score between a peak and TSS peak. If the score is 1, it means that the peak is TSS
itself.

integrated = ma.integrate_tss_peak_with_cicero(tss_peak=tss_annotated,
cicero_connections=cicero_connections)

print (integrated. shape)

integrated.head()

(44309, 3)

peak_id gene_short_name coaccess
0 chrl10_100006139_100006389 Tmtc3 0.017915
1 c¢hrl10_100015291_100017830 Kitl 1.000000
2 ¢chrl10_100018677_100020384 Kitl 0.146517
3 c¢hrl10_100050858_100051762 Kitl 0.069751
4 chrl10_100052829_100053395 Kitl 0.202670

4. Filter peaks

Remove peaks that have weak coaccess score.

peak integrated[integrated.coaccess >= 0.8]
peak = peak[["peak_id", "gene_short_name"]].reset_index (drop=True)

print (peak.shape)

peak.head ()
(15779, 2)

peak_id gene_short_name
0 chrl10_100015291_100017830 Kitl
1 chrl0_100486534_100488209 Tmtc3
2 chrl0_100588641_100589556 4930430F08R1k
3 c¢hrl10_100741247_100742505 Gm35722
4 chrl10_101681379_101682124 Mgatdc

2.2. Tutorial 105

[127]:

celloracle, Release 0.8.4

5. Save data

Save the promoter/enhancer peak.

peak.to_csv ("processed_peak_file.csv")

Please go to next step: Transcriptoin factor motif scan

https://morris-lab.github.io/CellOracle.documentation/tutorials/motifscan.html

Once you get the input data, please go to the Motif scan section.

Option2. Data preprocessing of bulk ATAC-seq data

Bulk DNA-seq data can be used to get the accessible promoter/enhancer sequences.
The jupyter notebook file is available here .

Or click below to see the contents.

Overview

In this notebook, we will make TSS annotation in the bulk scATAC-seq data to get input data of base-GRN construc-
tion.

Notebook file

Notebook file is available here. https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_
data_processing/option2_Bulk_ATAC-seq_data/O1_preprocess_Bulk_ATAC_seq_peak_data.ipynb

0. Import libraries

: import pandas as pd

import numpy as np
import matplotlib.pyplot as plt
smatplotlib inline

import seaborn as sns

import os, sys, shutil, importlib, glob
from tgdm import tgdm_notebook as tgdm

$config InlineBackend.figure_format = 'retina'
plt.rcParams|['figure.figsize'] = [6, 4.5]
plt.rcParams["savefig.dpi"] = 300

Import celloracle function
from celloracle import motif_analysis as ma

106 Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/motifscan.html
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option2_Bulk_ATAC-seq_data/01_preprocess_Bulk_ATAC_seq_peak_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option2_Bulk_ATAC-seq_data/01_preprocess_Bulk_ATAC_seq_peak_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/01_ATAC-seq_data_processing/option2_Bulk_ATAC-seq_data/01_preprocess_Bulk_ATAC_seq_peak_data.ipynb

[10]:

celloracle, Release 0.8.4

1. Load input data

Import ATAC-seq bed file. This script can also be used with DNase-seq or Chip-seq data.
Here, we use bulk ATAC-seq data. Please prepare bulk ATAC-seq data as a bed file format.

You can download the demo file by running the following command: If the file download fails, please manually
download and unzip the data.

https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/bulk_ATAC_seq_peak_data.bed

Download file.
'wget https://raw.githubusercontent.com/morris—-lab/CellOracle/master/docs/demo_data/
—bulk_ATAC_seq peak_data.bed

If you are using macOS, please try the following command.
#!curl -O https://raw.githubusercontent.com/morris—lab/CellOracle/master/docs/demo_
—data/bulk_ATAC_seq_peak_data.bed

--2021-07-07 21:38:59-- https://raw.githubusercontent.com/morris—-lab/CellOracle/
—master/docs/demo_data/bulk_ATAC_seq_peak_data.bed
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133,

-185.199.109.133, 185.199.108.133,

Connecting to raw.githubusercontent.com (raw.githubusercontent.com) 185.199.110.133]:
—443 ... connected.

HTTP request sent, awaiting response... 200 OK

Length: 10446347 (10.0M) [text/plain]

Saving to: ‘bulk_ATAC_seq_peak_data.bed’

bulk_ATAC_seq_peak_ 100%[> 9.96M —--.-KB/s in 0.1s
2021-07-07 21:39:00 (80.3 MB/s) - ‘bulk_ATAC_seq _peak_data.bed’ saved [10446347/
—10446347]

Load bed file

file_path_of _bed_file = "bulk_ATAC_seq_peak_data.bed"
bed = ma.read_bed(file_path_of_bed_file)

print (bed.shape)

bed.head ()
(436206, 4)

chrom start end segname
0 chrl 3002478 3002968 <chrl _3002478_3002968
1 chrl 3084739 3085712 «chrl_3084739_3085712
2 chrl 3103576 3104022 chrl _3103576_3104022
3 chrl 3106871 3107210 <chrl_3106871_3107210
4 chrl 3108932 3109158 <chrl_3108932_3109158

Convert bed file into peak name 1list
peaks = ma.process_bed_file.df_to_list_peakstr (bed)
peaks

array (['chrl_3002478_3002968', 'chrl 3084739_3085712",
'chrl_3103576_3104022', ..., 'chrY_631222_631480"',
'chry_795887_796426"', 'chrY_ 2397419 _2397628'], dtype=object)

2.2. Tutorial 107

https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/bulk_ATAC_seq_peak_data.bed

[11]:

[11]:

[12]:

[10]:

celloracle, Release 0.8.4

2. Make TSS annotation

IMPORTANT: Please make sure that you are setting the correct ref genome!

tss_annotated

= ma.get_tss_info (peak_str_list=peaks,

Check results
tss_annotated.tail ()

que bed peaks:
tss peaks in que:

24817
24818
24819
24820
24821

chr
chr2
chrlb
chrl4
chrl?7
chrl0

436206

start
60560211
3975177
67690701
48455247
59861192

Change format
peak_id_tss

tss_annotated

=)

tss_annotated

24822

end gene_short_name strand

60561602 Itgb6 -
3978654 BC037032 -
67692101 Ppp2r2a -
48455773 B430306N03Rik +
59861608 Gm17455 +

ma.process_bed_file.df_to_list_peakstr (tss_annotated)

= pd.DataFrame ({"peak_id": peak_id_tss,
"gene_short_name": tss_annotated.gene_short_name.values}

= tss_annotated.reset_index (drop=True)

print (tss_annotated. shape)
tss_annotated.head()

(24822, 2)

peak_id gene_short_name
0 chr7_50691730_50692032 Nkg7
1 chr7_50692077_50692785 Nkg7
2 chrl3_93564413_93564836 Thbs4
3 chrl3_14613429_14615645 Hecwl
4 chr3_99688753_99689665 Spagl?
3. Save data

tss_annotated.to_csv ("processed_peak_file.csv")

Please go to next step: Transcriptoin factor motif scan

https://morris-lab.github.io/CellOracle.documentation/tutorials/motifscan.html

ref_genome="mm9")

108

Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/motifscan.html

[10]:

[11]:

[12]:

celloracle, Release 0.8.4

TF motif scan for base-GRN construction

Transcription factor binding motif scan

In the previous section, we got accessible Promoter/enhancer DNA regions using ATAC-seq data. Next, we will obtain
a base-GRN by scanning the regulatory genomic sequences for TF-binding motifs. In the later GRN inference process,
this list will be used to define potential regulatory connections.

The jupyter notebook files and data used in this tutorial are available here .

Scan DNA sequences searching for TF binding motifs

Python notebook

Overview

This notebook introduce how to perform TF binding motif scan. Using scATAC-seq peak and Motif information, we
generate base-GRN.

Notebook file

Notebook file is available at CellOracle GitHub. https://github.com/morris-lab/CellOracle/blob/master/docs/
notebooks/02_motif_scan/02_atac_peaks_to_TFinfo_with_celloracle_20200801.ipynb

0. Import libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

import os, sys, shutil, importlib, glob
from tgdm.notebook import tgdm

from celloracle import motif_analysis as ma
from celloracle.utility import save_as_pickled_object

%config InlineBackend.figure_format = 'retina'
smatplotlib inline

plt.rcParams|['figure.figsize'] = (15,7)
plt.rcParams(["savefig.dpi"] = 600

2.2. Tutorial 109

https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/02_atac_peaks_to_TFinfo_with_celloracle_20200801.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/02_atac_peaks_to_TFinfo_with_celloracle_20200801.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/02_atac_peaks_to_TFinfo_with_celloracle_20200801.ipynb

[19]:

celloracle, Release 0.8.4

1. Rerefence genome data preparation

Before starting celloracle analysis, we need to make sure that the reference genome data is correctly installed in your
computational environment. If not, please install reference genome first as follows.

PLEASE make sure that you are setting correct ref genome.
ref_genome = "mmlO"

genome_installation = ma.is_genome_installed(ref_genome=ref_genome)
print (ref_genome, "installation: ", genome_installation)

mml0 installation: True

if not genome_installation:

import genomepy

genomepy.install_genome (ref_genome, "UCSC")
else:

print (ref_genome, "is installed.")

mml0 is installed.

2. Load data

In this notebook, we explain how to make base GRN data.
Please look at the previous steps to see an example of input data preparation method.
https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#step1-scatac-seq-analysis-with-cicero
As a input data, we need scATAC-seq file in the following format.

* Prepare input data as a csv file with tree columns.

* The first column is index.

e The second column is peak_id.

* The third column is gene_short_name.

The csv file should be like this.

110 Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/base_grn.html#step1-scatac-seq-analysis-with-cicero

celloracle, Release 0.8.4

;peak id,gene short name

0,chrl0 100015291 100017830,Kitl
l,chrl0 100486534 100488209, Tmtc3
2,chrl0 100588641 100589556,4930430F08R1ik
3,chr10 100741247 100742505,Gm35722
4,chrl0 101681379 101682124 ,Mgatic
5,chrl0 102158688 102159257 ,Mgat4c
6,chrl0 102511934 102512015,Rassf9
7,chrl0 103026814 103029423,Al1xl1
8,chrl0 103235705 103236587 ,Lrriql
9,chrl0 103366977 _103369690,S1lcé6al5
10,chr10 10472105 10472772,Adgb
11,chr10 105573396 _105575735,Gm15663
12,chr10 105573396 105575735, Tmtc2
13,chrl0 10557396 _10558671,Rab32
14,chr10 105840548 105842058,Ccdc59
15,chrl0 105840548 105842058, Mettl25

We load this csv file using pd . read_csv () to make pandas.DataFrame like this.

peak_id gene_short_name

0 chr10_100015291_100017830 Kitl
1 chr10_100486534_100488209 Tmtc3
2 chr10_100588641_100589556 4930430F08Rik
3 chr10_100741247_100742505 Gm35722
4 chr10_101681379_101682124 Mgatdc

You can download the demo file by running the following command: If the file download fails, please manually

2.2. Tutorial 111

[13]:

celloracle, Release 0.8.4

download and unzip the data.
https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/processed_peak_file.csv

Download file.
'wget https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/
—processed_peak_file.csv

If you are using macOS, please try the following command.
#!curl -O https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_
—~data/processed _peak_file.csv

--2021-07-07 21:49:27-- https://raw.githubusercontent.com/morris-lab/CellOracle/
—master/docs/demo_data/processed_peak_file.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133,

—185.199.109.133, 185.199.108.133,

Connecting to raw.githubusercontent.com (raw.githubusercontent.com) [185.199.110.133]:
—443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 569448 (556K) [text/plain]

Saving to: ‘processed_peak_file.csv’

processed_peak_file 100%[>] 556.10K —--.-KB/s in 0.02s

2021-07-07 21:49:27 (29.2 MB/s) - ‘processed_peak_file.csv’ saved [569448/569448]

Load annotated peak data.
peaks = pd.read_csv("processed_peak_ file.csv", index_col=0)

peaks.head()

peak_id gene_short_name
0 chrl10_100015291_100017830 Kitl
1 <¢chrl10_100486534_.100488209 Tmtc3
2 chrl0_100588641_100589556 4930430F08R1k
3 ¢hrl10_100741247_100742505 Gm35722
4 chrl10_101681379_101682124 Mgatédc

Define function for quality check
def decompose_chrstr (peak_str) :

Args:
peak_str (str): peak_str. e.g. 'chrl 3094484 3095479’

Returns:
tuple: chromosome name, start position, end position

mmn

xchr_, start, end = peak_str.split("_")
chr_ = "_".join(chr_)
return chr_, start, end

from genomepy import Genome

def check_peak_foamat (peaks_df, ref_genome) :

Check peak fomat.
(1) Check chromosome name.
(continues on next page)

112 Chapter 2. Contents

https://raw.githubusercontent.com/morris-lab/CellOracle/master/docs/demo_data/processed_peak_file.csv

[20] :

celloracle, Release 0.8.4

(2) Check peak size (length) and remove sort DNAs

mmn

df = peaks_df.copy ()

n_peaks_before = df.shape[0]

Decompose peaks and make df
decomposed = [decompose_chrstr (peak_str)
df_decomposed = pd.DataFrame (np.array (decomposed))
df_decomposed.columns = ["chr", "start", "end"]
df_decomposed["start"]
df_decomposed["end"]

Load genome data
genome_data = Genome (ref_genome)
all_chr list = list (genome_data.keys())

DNA length check
lengths = np.abs (df_decomposed["end"]

Filter peaks with invalid chromosome name
n_threshold = 5
df = df[(lengths >= n_threshold)

DNA length check
lengths = np.abs (df_decomposed["end"]

Data counting

n_invalid_length =
n_peaks_invalid_chr =
n_peaks_after = df.shape[0]

(continued from previous page)

(<5bp)

for peak_str in df["peak_ id"]]

= df_decomposed|["start"].astype (np.int)
= df_decomposed["end"] .astype (np.int)

- df_decomposed["start"])

& df_decomposed.chr.isin(all_chr_list)]

— df_decomposed["start"])

len(lengths[lengths < n_threshold])
n_peaks_before - df_decomposed.chr.isin(all_chr_list) .sum()

#

print ("Peaks before filtering: ", n_peaks_before)

print ("Peaks with invalid chr_name: ", n_peaks_invalid_chr)
print ("Peaks with invalid length: ", n_invalid_length)
print ("Peaks after filtering: ", n_peaks_after)

return df

peaks = check_peak_foamat (peaks, ref_genome)

Peaks
Peaks
Peaks
Peaks

before filtering: 15779
with invalid chr_name: 0
with invalid length: 2
after filtering: 15777

You can select TF binding motif data for Celloracle motif analysis. If you have no preference and just want to use a

default motif, you don’t need to load motif yourself.

If you want to use a non-default motif dataset, we have several options.

e Use custom motifs provided by gimmemotifs >Gimmemotifs is a python package for motif anal-

ysis. It provides many motif dataset.

https://gimmemotifs.readthedocs.io/en/stable/overview.html#

2.2. Tutorial

113

https://gimmemotifs.readthedocs.io/en/stable/overview.html#motif-databases
https://gimmemotifs.readthedocs.io/en/stable/overview.html#motif-databases

celloracle, Release 0.8.4

motif-databases > > Please look at this notebook to see how to load motif data from gimmemotifs
database. > https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_
preparation/01_How_to_load_gimmemotifs_motif_data.ipynb

¢ Use custom motifs provided by CellOracle.
Celloracle also provides many motif datasets generated from CisBP. http://cisbp.ccbr.utoronto.ca/

Please look at this notebook to see how to load CisBP motifs.https://github.com/morris-
lab/CellOracle/blob/master/docs/notebooks/02_motif _scan/motif data_preparation/02_How_to_load_CisBPv2_motif data.ipynt

e Make a custom motif data by yourself. @ >You can create custom motif data by yourself. >
>Please look at this notebook to see how to create custom motif data.https://github.com/morris-
lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/03_How_to_make_custom_motif.ipynb

3. Instantiate TFinfo object and search for TF binding motifs

The motif analysis module has a custom class, TFinfo. The TFinfo object will do all steps below.
* Converts a peak data into a DNA sequences.
* Ccans the DNA sequences searching for TF binding motifs.
* Postprocess the results of motif scan.

» Converted data into appropriate format. You can convert data into base-GRN. You can select file format: python
dictionary or pandas dataframe. This output data, base-GRN is necessary for GRN model construction in the
later step.

[16]: # Instantiate TFinfo object
tfi = ma.TFinfo (peak_data_frame=peaks,
ref_genome=ref_genome)
You can specify TF binding motif data as follows.
tfi.scan (motifs=motifs)
If you don’t set motifs or set None, default motifs will be loaded automatically.
 For mouse and human, “gimme.vertebrate.v5.0.” will be used as a default motifs.

» For another species, a species specific TF binding motif data extracted from CisBP ver2.0 will be used.

[1: %$%time
Scan motifs. !!CAUTION!! This step may take several hours if you have many peaks!
tfi.scan(fpr=0.02,
motifs=None, # If you enter None, default motifs will be loaded.
verbose=True)

Save tfinfo object
tfi.to_hdf5(file_path="testl.celloracle.tfinfo")

[16]: # Check motif scan results
tfi.scanned_df.head()

[16]: segname motif_id factors_direct \
0 c¢chrl10_100015291_100017830 GM.5.0.Homeodomain.0001 TGIF1
1 c¢hrl10_100015291_100017830 GM.5.0.Mixed.0001
2 ¢chrl10_100015291_100017830 GM.5.0.Mixed.0001
3 ¢chrl10_100015291_100017830 GM.5.0.Mixed.0001

(continues on next page)

114 Chapter 2. Contents

https://gimmemotifs.readthedocs.io/en/stable/overview.html#motif-databases
https://gimmemotifs.readthedocs.io/en/stable/overview.html#motif-databases
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/01_How_to_load_gimmemotifs_motif_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/01_How_to_load_gimmemotifs_motif_data.ipynb
http://cisbp.ccbr.utoronto.ca/

[15]:

celloracle, Release 0.8.4

4 ¢chrl10_.100015291_100017830

factors_indirect

ENSG00000234254,
SRF,
SRF,

Sw N PO

NR2C2,

TGIF1
EGR1
EGR1

SRF, EGR1

Nr2c2

O J J 3 O

GM.5.0.Nuclear_receptor.0002

score

.311002
.925873
.321375
.276585
.067331

ro

S

1003

48
91
81
44

1
1
1
9

strand

1
1
-1
-1
-1

(continued from previous page)

NR2C2

We have the score for each sequence and motif_id pair. In the next step we will filter the motifs with low score.

4, Filtering motifs

Reset filtering
tfi.reset_filtering()

Do filtering

tfi.filter_motifs_by_score (threshold=10)

Do post filtering process.
tfi.make_TFinfo_dataframe_and_dictionary (verbose=True)

HBox (children=(FloatProgress (value=0.0,

HBox (children=(FloatProgress (value=0.0,

max=14142.0),

max=15006.0),

Convert results into several file format.

HTML (value="")))

HTML (value="")))

HBox (children=(FloatProgress (value=0.0, max=1090.0), HTML(value='"')))
5. Get Final results
df = tfi.to_dataframe ()
df.head()
peak_id gene_short_name 9430076cl5rik Ac002126.6 \

0 chrl0_100015291_100017830 Kitl 0.0 0.0
1 c¢chrl10_100486534_100488209 Tmtc3 0.0 0.0
2 chrl10_100588641_100589556 4930430F08R1k 0.0 0.0
3 chrl0_100741247_100742505 Gm35722 0.0 0.0
4 chrl10_101681379_101682124 Mgatdc 0.0 0.0

Ac012531.1 Ac226150.2 Afp Ahr Ahrr Aire Znf784 zZnf8 Znf8l6 \
0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0. 0.
1 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
2 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Zznf85 Zscanl0 Zscanl6 Zscan22 Zscan26 Zscan3l Zscand
0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
1 0.0 0.0 0.0 1.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(continues on next page)

2.2. Tutorial

115

[19]:

celloracle, Release 0.8.4

(continued from previous page)

[5 rows x 1092 columns]

6. Save result

We’ll use this information when making the GRNs. Save the results.

Save result as a dataframe
df = tfi.to_dataframe ()
df.to_parquet (os.path. join (folder, "base_ GRN_dataframe.parquet"))

If you want, you can save the result as a dictionary as follows.

#td = tfi.to_dictionary (dictionary_ type="targetgenelTFs")
#save_as_pickled object (td, os.path.join(folder, "TFinfo targetgenelTFs.pickled"))

We will use this base-GRN data in the GRN construction section.

https://morris-lab.github.io/CellOracle.documentation/tutorials/networkanalysis.html

How to use different motif data

Celloracle provides several dafault motifs. If you don’t enter motif data, celloracle automatically load default motifs
for your species. In most case, you don’t need to prepare TF binding motifs yourself.

But you can use another motif data.

gimmemotifs motif data

Here is the notebook describing how to load a motif data from gimmemotifs database. https://github.com/morris-lab/
CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/01_How_to_load_gimmemotifs_
motif_data.ipynb

CellOracle motif dataset generated from CisBP version2 database

Here is the notebook describing how to load a motif data from CisBP version2 database. https:
//github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/02_How_
to_load_CisBPv2_motif_data.ipynb

116 Chapter 2. Contents

https://morris-lab.github.io/CellOracle.documentation/tutorials/networkanalysis.html
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/01_How_to_load_gimmemotifs_motif_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/01_How_to_load_gimmemotifs_motif_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/01_How_to_load_gimmemotifs_motif_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/02_How_to_load_CisBPv2_motif_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/02_How_to_load_CisBPv2_motif_data.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/02_How_to_load_CisBPv2_motif_data.ipynb

celloracle, Release 0.8.4

How to create custom motif data

We can creaet motif data by ourself. Here is an example code. https://github.com/morris-lab/CellOracle/blob/master/
docs/motebooks/02_motif_scan/motif_data_preparation/03_How_to_make_custom_motif.ipynb

2.3 API

2.3.1 Command Line API

CellOracle has a command line API. This command can be used to convert scRNA-seq data. If you have a scRNA-seq
data which was processed with Seurat and saved as Rds file, you can use the following command to make anndata
from Seurat object. The anndata object produced by this command can be used for input of celloracle.

seuratToAnndata YOUR_SEURAT_OBJECT.Rds OUTPUT_PATH

2.3.2 Python API

Custom class in celloracle

‘We define some custom classes in celloracle.

class celloracle.Links (name, links_dict={})
Bases: object

This is a class for the processing and visualization of GRNs. Links object stores cluster-specific GRNs and
metadata. Please use “get_links” function in Oracle object to generate Links object.

links_dict
Dictionary that store unprocessed network data.

Type dictionary

filtered links
Dictionary that store filtered network data.

Type dictionary

merged_score
Network scores.

Type pandas.dataframe

cluster
List of cluster name.

Type list of str

name
Name of clustering unit.

Type str

palette
DataFrame that store color information.

Type pandas.dataframe

2.3. API 117

https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/03_How_to_make_custom_motif.ipynb
https://github.com/morris-lab/CellOracle/blob/master/docs/notebooks/02_motif_scan/motif_data_preparation/03_How_to_make_custom_motif.ipynb

celloracle, Release 0.8.4

filter_links (p=0.001, weight="coef_abs', threshold_number=10000, genelist_source=None,

genelist_target=None, thread_number=None)
Filter network edges. In most cases, inferred GRN has non-significant random edges. We have to remove

these edges before analyzing the network structure. You can do the filtering in any of the following ways.
(1) Filter based on the p-value of the network edge. Please enter p-value for thresholding.

(2) Filter based on network edge number. If you set the number, network edges will be filtered based on
the order of a network score. The top n-th network edges with network weight will remain, and the
other edges will be removed. The network data has several types of network weight, so you have to
select which network weight do you want to use.

(3) Filter based on an arbitrary gene list. You can set a gene list for source nodes or target nodes.

Parameters
* p (float) — threshold for p-value of the network edge.
* weight (str) — Please select network weight name for the filtering

* genelist_source (1ist of str) - gene list to remain in regulatory gene nodes.
Default is None.

* genelist_target (list of str)-— gene list to remain in target gene nodes. De-
fault is None.

get_network_entropy (value='coef_abs')
Calculate network entropy scores.

Parameters value (str)— Default is “coef_abs”.

get_score (test_mode=False)
Get several network sores using R libraries. Make sure all dependent R libraries are installed in your
environment before running this function. You can check the installation for the R libraries by running
test_installation() in network_analysis module.

plot_cartography scatter_per_cluster (gois=None, clusters=None, scatter=True,
kde=False, auto_gene_annot=False, per-
centile=98, args_dot={'n_levels': 105},
args_line={'c": 'gray'}, args_annot={},

save=None)
Make a gene network cartography plot. Please read the original paper describing gene network cartography

for more information. https://www.nature.com/articles/nature(03288
Parameters
* links (Links)— See network_analysis.Links class for detail.
* gois (1ist of srt)— Listof gene name to highlight.

e clusters (list of str)— List of cluster name to analyze. If None, all clusters in
Links object will be analyzed.

* scatter (bool)— Whether to make a scatter plot.
* auto_gene_annot (bool)— Whether to pick up genes to make an annotation.

* percentile (float)— Genes with a network score above the percentile will be shown
with annotation. Default is 98.

* args_dot (dictionary) — Arguments for scatter plot.

* args_line (dictionary)— Arguments for lines in cartography plot.

118 Chapter 2. Contents

https://www.nature.com/articles/nature03288

celloracle, Release 0.8.4

* args_annot (dictionary)— Arguments for annotation in plots.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_cartography term (goi, save=None, plt_show=True)
Plot the gene network cartography term like a heatmap. Please read the original paper of gene network
cartography for the principle of gene network cartography. https://www.nature.com/articles/nature03288

Parameters
e links (Links)— See network_analysis.Links class for detail.
* gois (1ist of srt)-Listof gene name to highlight.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_degree_distributions (plot_model=False, save=None)
Plot the network degree distributions (the number of edge per gene). The network degree will be visualized
in both linear scale and log scale.

Parameters
e links (Links)— See network_analysis.Links class for detail.
* plot_model (bool)— Whether to plot linear approximation line.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_network_entropy_distributions (update_network_entropy=False, save=None)
Plot the distribution for network entropy. See the CellOracle paper for more detail.

Parameters
e links (Links object) - See network_analysis.Links class for detail.

e values (I1ist of str)-The listof score to visualize. If it is None, all network score
(listed above) will be used.

* update_network_entropy (bool)— Whether to recalculate network entropy.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_score_comparison_2D (value, clusterl, cluster2, percentile=99, annot_shifts=None,

save=None, plt_show=True, interactive=False)
Make a scatter plot that compares specific network scores in two groups.

Parameters
e links (Links)— See network_analysis.Links class for detail.
* value (srt) — The network score type.

e clusterl (str) — Cluster name. Network scores in cluster]l will be visualized in the
X-axis.

¢ cluster2 (str) — Cluster name. Network scores in cluster2 will be visualized in the
y-axis.

* percentile (float)— Genes with a network score above the percentile will be shown
with annotation. Default is 99.

* annot_shifts ((float, float))— Annotation visualization setting.

23.

API 119

https://www.nature.com/articles/nature03288

celloracle, Release 0.8.4

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_score_discributions (values=None, method="boxplot', save=None)
Plot the distribution of network scores. An individual data point is a network edge (gene).

Parameters
e links (Links)— See Links class for details.

* values (list of str)-—Thelistof score to visualize. If it is None, all of the network
score will be used.

* method (str) — Plotting method. Select either “boxplot” or “barplot”.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_score_per_cluster (goi, save=None, plt_show=True)
Plot network score for a gene. This function visualizes the network score for a specific gene between
clusters to get an insight into the dynamics of the gene.

Parameters
* links (Links)— See network_analysis.Links class for detail.
e goi (srt)— Gene name.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

plot_scores_as_rank (cluster, n_gene=50, save=None)
Pick up top n-th genes wich high-network scores and make plots.

Parameters
e links (Links)— See network_analysis.Links class for detail.
* cluster (str)— Cluster name to analyze.
* n_gene (int)— Number of genes to plot. Default is 50.

* save (str) — Folder path to save plots. If the folder does not exist in the path, the
function creates the folder. Plots will not be saved if [save=None]. Default is None.

to_hd£5 (file_path)
Save object as hdf5.

Parameters £file_path (str) — file path to save file. Filename needs to end with ‘.cellor-
acle.links’

class celloracle.Net (gene_expression_matrix, gem_standerdized=None, TFinfo_matrix=None, cell-

state=None, TFinfo_dic=None, annotation=None, verbose=True)
Bases: object

Net is a custom class for inferring sample-specific GRN from scRNA-seq data. This class is used inside the
Oracle class for GRN inference. This class requires two types of information below.

(1) Single-cell RNA-seq data: The Net class needs processed scRNA-seq data. Gene and cell filtering, quality
check, normalization, log-transformation (but not scaling and centering) have to be done before starting
the GRN calculation with this class. You can also use any arbitrary metadata (i.e., mRNA count, cell-cycle
phase) for GRN input.

120 Chapter 2. Contents

celloracle, Release 0.8.4

(2) Potential regulatory connection (or base GRN): This method uses the list of potential regulatory TFs as
input. This information can be calculated from ATAC-seq data using the motif-analysis module. If sample-
specific ATAC-seq data is not available, you can use general TF-binding info derived from public ATAC-
seq dataset of various tissue/cell type.

linkList
The results of the GRN inference.

Type pandas.DataFrame

all_genes
An array of all genes that exist in the input gene expression matrix

Type numpy.array

embedding_name
The key name name in adata.obsm containing dimensional reduction coordinates

Type str

annotation
Annotation. you can add custom annotation.

Type dictionary

coefs_dict
Coefs of linear regression.

Type dictionary

stats_dict
Statistic values about coefs.

Type dictionary

fitted_genes
List of genes where the regression model was successfully calculated.

Type list of str

failed_genes
List of genes that were not assigned coefs

Type list of str

cellstate
A metadata for GRN input

Type pandas.DataFrame

TFinfo
Information about potential regulatory TFs.

Type pandas.DataFrame

gem
Merged matrix made with gene_expression_matrix and cellstate matrix.

Type pandas.DataFrame

gem_standerdized
Almost the same as gem, but the gene_expression_matrix was standardized.

Type pandas.DataFrame

2.3. API 121

celloracle, Release 0.8.4

library_last_update_date
Last update date of this code. This info is for code development. It can be deprecated in the future

Type str

object_initiation_date
The date when this object was made.

Type str

addAnnotation (annotation_dictionary)
Add a new annotation.

Parameters annotation_dictionary (dictionary) — e.g. {“sample_name”: “NIH
3T3 cell”}

addTFinfo_dictionary (TFdict)
Add a new TF info to pre-exiting TFdict.

Parameters TFdict (dictionary)— python dictionary of TF info.

addTFinfo_matrix (TFinfo_matrix)
Load TF info dataframe.

Parameters TFinfo (pandas.DataFrame)— information about potential regulatory TFs.

copy ()
Deepcopy itself

fit_All_genes (bagging_number=200, scaling=True, model_method='bagging_ridge', com-
mand_line_mode=False, log=None, alpha=1, verbose=True)
Make ML models for all genes. The calculation will be performed in parallel using scikit-learn bagging
function. You can select a modeling method (bagging_ridge or bayesian_ridge). This calculation usually
takes a long time.

Parameters
* bagging_number (int)— The number of estimators for bagging.
* scaling (bool)— Whether or not to scale regulatory gene expression values.

* model_method (str) — ML model name. Please select either “bagging_ridge” or
“bayesian_ridge”

* command_line_mode (bool) — Please select False if the calculation is performed on
jupyter notebook.

* log(logging object) - log object to output log
* alpha (int) — Strength of regularization.
* verbose (bool)— Whether or not to show a progress bar.

fit_All_genes_parallel (bagging_number=200, scaling=True, log=None, verbose=10)
IMPORTANT: this function being debugged and is currently unavailable.

Make ML models for all genes. The calculation will be performed in parallel using joblib parallel module.
Parameters
* bagging_number (int)— The number of estimators for bagging.
* scaling (bool)— Whether or not to scale regulatory gene expression values.
* log(logging object)—log object to output log

* verbose (int) - verbose for joblib parallel

122 Chapter 2. Contents

celloracle, Release 0.8.4

fit_genes (target_genes, bagging_number=200, scaling=True, model_method="bagging_ridge’,

save_coefs=False, command_line_mode=False, log=None, alpha=1, verbose=True)
Make ML models for genes of interest. This calculation will be performed in parallel using scikit-learn’s

bagging function. You can select a modeling method; Please chose either bagging_ridge or bayesian_ridge.
Parameters
* target_genes (list of str)-— gene list
* bagging_ number (int)— The number of estimators for bagging.
* scaling (bool)— Whether or not to scale regulatory gene expression values.

* model_method (str) — ML model name. Please select either “bagging_ridge” or
“bayesian_ridge”

* save_coefs (bool)— Whether or not to store details of coef values in bagging model.

¢ command_line_mode (bool) — Please select False if the calculation is performed on
jupyter notebook.

* log (logging object) - log object to output log
* alpha (int) — Strength of regularization.
* verbose (bool)— Whether or not to show a progress bar.

plotCoefs (target_gene, sort=True, threshold_p=None)
Plot the distribution of Coef values (network edge weights).

Parameters
* target_gene (str)— gene name
* sort (bool)— Whether or not to sort genes by its strength
* bagging_number (int)— The number of estimators for bagging.

e threshold_p (float) — the threshold for p-values. TFs will be filtered based on the
p-value. if None, no filtering is applied.

to_hd£5 (file_path)
Save object as hdf5.

Parameters file path (str) — file path to save file. Filename needs to end with ‘.cellor-
acle.net’

updateLinkList (verbose=True)
Update LinkList. LinkList is a data frame that store information about inferred GRNS.

Parameters verbose (bool)— Whether or not to show a progress bar

updateTFinfo_dictionary (TFdict)
Update TF info matrix

Parameters TFdict (dictionary) — A python dictionary in which a key is Target gene,
value are potential regulatory genes for the target gene.

class celloracle.Oracle
Bases: celloracle.trajectory.modified_VelocytoLoom_ class.
modified_VelocytoLoom,celloracle.visualizations.oracle_object_visualization.
Oracle_visualization

Oracle is the main class in CellOracle. Oracle object imports scRNA-seq data (anndata) and TF information
to infer cluster-specific GRNs. It can predict the future gene expression patterns and cell state transitions in

2.3. API 123

celloracle, Release 0.8.4

response to the perturbation of TFs. Please see the CellOracle paper for details. The code of the Oracle class
was made of the three components below.

(1) Anndata: Gene expression matrix and metadata from single-cell RNA-seq are stored in the anndata ob-
ject. Processed values, such as normalized counts and simulated values, are stored as layers of anndata.
Metadata (i.e., Cluster info) are saved in anndata.obs. Refer to scanpy/anndata documentation for detail.

(2) Net: Net is a custom class in celloracle. Net object processes several data to infer GRN. See the Net class
documentation for details.

(3) VelycytoLoom: Calculation of transition probability and visualization of directed trajectory graph will be
performed in the same way as velocytoloom. VelocytoLoom is class from Velocyto, a python library for
RNA-velocity analysis. In celloracle, we use some functions in velocytoloom for the visualization.

adata
Imported anndata object

Type anndata

cluster_column_ name
The column name in adata.obs containing cluster info

Type str

embedding_name
The key name in adata.obsm containing dimensional reduction cordinates

Type str

addTFinfo_dictionary (TFdict)
Add new TF info to pre-existing TFdict. Values in the old TF dictionary will remain.

Parameters TFdict (dictionary)— Python dictionary of TF info.
calculate_mass_filter (min_mass=0.01, plot=False)
calculate_p_mass (smooth=0.8, n_grid=40, n_neighbors=200, n_jobs=- 1)

change_cluster_unit (new_cluster_column_name)
Change clustering unit. If you change cluster, previous GRN data and simulation data will be delated.
Please re-calculate GRNs.

copy ()
Deepcopy itself.

count_cells_in _mc_resutls (cluster_use, end=- 1, order=None)
Count the simulated cell by the cluster.

Parameters

¢ cluster_use (str)—cluster information name in anndata.obs. You can use any cluster
information in anndata.obs.

* end (int) — The end point of Sankey-diagram. Please select a step in the Markov simu-
lation. if you set [end=-1], the final step of Markov simulation will be used.

Returns Number of cells before / after simulation

Return type pandas.DataFrame
extract_active_gene_lists (return_as=None, verbose=False)

Parameters

* return_as (str) — If not None, it returns dictionary or list. Chose either “indivi-
sual_dict” or “unified_list”.

124

Chapter 2. Contents

celloracle, Release 0.8.4

* verbose (bool)— Whether to show progress bar.
Returns The format depends on the argument, “return_as”.
Return type dictionary or list

fit_GRN_for_simulation (GRN_unit="cluster', alpha=1, use_cluster_specific_TFdict=False)
Do GRN inference. Please see the paper of CellOracle paper for details.

GRN can be constructed for the entire population or each clusters. If you want to infer cluster-specific
GRN, please set [GRN_unit="cluster”]. You can select cluster information when you import data.

If you set [GRN_unit="whole”’], GRN will be made using all cells.
Parameters
e GRN_unit (str) - Select “cluster” or “whole”

* alpha (float or int)- The strength of regularization. If you set a lower value, the
sensitivity increases, and you can detect weaker network connections. However, there may
be more noise. If you select a higher value, it will reduce the chance of overfitting.

get_cluster_specific_TFdict_from_Links (links_object, ignore_warning=False)
Extract TF and its target gene information from Links object. This function can be used to reconstruct
GRN s based on pre-existing GRNs saved in Links object.

Parameters 1links_object (Links)— Please see the explanation of Links class.

get_1links (cluster_name_for_GRN_unit=None, alpha=10, bagging_number=20, verbose_level=1,

test_mode=False, model_method="bagging_ridge', ignore_warning=False)
Makes GRN for each cluster and returns results as a Links object. Several preprocessing should be done

before using this function.
Parameters

e cluster_name_for GRN_ unit (str) — Cluster name for GRN calculation. The
cluster information should be stored in Oracle.adata.obs.

* alpha (float or int)- The strength of regularization. If you set a lower value, the
sensitivity increases, and you can detect weaker network connections. However, there may
be more noise. If you select a higher value, it will reduce the chance of overfitting.

* bagging number (int)— The number used in bagging calculation.

* verbose_level (int) - if [verbose_level>1], most detailed progress information will
be shown. if [verbose_level > 0], one progress bar will be shown. if [verbose_level == 0],
no progress bar will be shown.

* test_mode (bool) — If test_mode is True, GRN calculation will be done for only one
cluster rather than all clusters.

* model_method (str) — Chose modeling algorithm. “bagging_ridge” or
“bayesian_ridge”

get_mcmc_cell_transition_table (cluster_column_name=None, end=- 1)
Return cell count in the initial state and final state after mcmc. Cell counts are grouped by the cluster of
interest. Result will be returned as 2D matrix.

import_TF_data (TF_info_matrix=None, TF _info_matrix_path=None, TFdict=None)
Load data about potential-regulatory TFs. You can import either TF_info_matrix or TFdict. For more
information on how to make these files, please see the motif analysis module within the celloracle tutorial.

Parameters

e TF_info_matrix (pandas.DataFrame)— TF_info_matrix.

23.

API 125

celloracle, Release 0.8.4

e TF_info_matrix_ path (str)— File path for TF_info_matrix (pandas.DataFrame).
e TFdict (dictionary)— Python dictionary of TF info.

import_anndata_as_normalized_count (adata, cluster_column_name=None, embed-
ding_name=None, test_mode=False)
Load scRNA-seq data. scRNA-seq data should be prepared as an anndata object. Preprocessing (cell and

gene filtering, dimensional reduction, clustering, etc.) should be done before loading data. The method
will import NORMALIZED and LOG TRANSFORMED data but NOT SCALED and NOT CENTERED
data. See the tutorial for more details on how to process scRNA-seq data.

Parameters
* adata (anndata) — anndata object containing scRNA-seq data.

* cluster_ column_name (str) — the name of column containing cluster information
in anndata.obs. Clustering data should be in anndata.obs.

* embedding_name (str) — the key name for dimensional reduction information in an-
ndata.obsm. Dimensional reduction (or 2D trajectory graph) should be in anndata.obsm.

* transform (str)— The method for log-transformation. Chose one from “natural_log”
or “log2”.

import_anndata_as_raw_count (adata, cluster_column_name=None, embedding_name=None,

transform='"natural_log')
Load scRNA-seq data. scRNA-seq data should be prepared as an anndata object. Preprocessing (cell and

gene filtering, dimensional reduction, clustering, etc.) should be done before loading data. The method
imports RAW GENE COUNTS because unscaled and uncentered gene expression data are required for
the GRN inference and simulation. See tutorial notebook for the details about how to process scRNA-seq
data.

Parameters
* adata (anndata) — anndata object that stores scRNA-seq data.

¢ cluster_column_name (str) — the name of column containing cluster information
in anndata.obs. Clustering data should be in anndata.obs.

* embedding_name (str) — the key name for dimensional reduction information in an-
ndata.obsm. Dimensional reduction (or 2D trajectory graph) should be in anndata.obsm.

* transform (str)— The method for log-transformation. Chose one from “natural_log”
or “log2”.

plot_mc_results_as_kde (n_time, args={})
Pick up one timepoint in the cell state-transition simulation and plot as a kde plot.

Parameters
e n_time (int) - the number in Markov simulation

* args (dictionary) — An argument for seaborn.kdeplot. See seaborn documentation
for details (https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot).

plot_mc_results_as_sankey (cluster_use, start=0, end=- 1, order=None, font_size=10)
Plot the simulated cell state-transition as a Sankey-diagram after groping by the cluster.

Parameters

* cluster_use (str)- cluster information name in anndata.obs. You can use any cluster
information in anndata.obs.

* start (int)— The starting point of Sankey-diagram. Please select a step in the Markov
simulation.

126 Chapter 2. Contents

https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

celloracle, Release 0.8.4

* end (int) — The end point of Sankey-diagram. Please select a step in the Markov simu-
lation. if you set [end=-1], the final step of Markov simulation will be used.

* order (1ist of str)-The order of cluster name in the Sankey-diagram.
e font_size (int)— Font size for cluster name label in the Sankey diagram.

plot_mc_results_as_trajectory (cell_name, time_range, args={})
Pick up several timepoints in the cell state-transition simulation and plot as a line plot. This function can
be used to visualize how cell-state changes after perturbation focusing on a specific cell.

Parameters
¢ cell_name (str) - cell name. chose from adata.obs.index
* time_range (1ist of int) - the list of index in Markov simulation

* args (dictionary) — dictionary for the arguments for matplotlib.pyplit.plot. See
matplotlib documentation for details (https://matplotlib.org/api/_as_gen/matplotlib.pyplot.
plot.html#matplotlib.pyplot.plot).

prepare_markov_simulation (verbose=False)
Pick up cells for Markov simulation.

Parameters verbose (bool) - If True, it plots selected cells.

run_markov_chain_simulation (n_steps=500, n_duplication=>5, seed=123, calcu-

))] late_randomized=True) » .
Do Markov simlations to predict cell transition after perturbation. The transition probability between cells

has been calculated based on simulated gene expression values in the signal propagation process. The cell
state transition will be simulated based on the probability. You can simulate the process multiple times to
get a robust outcome.

Parameters

* n_steps (int) - steps for Markov simulation. This value is equivalent to the amount of
time after perturbation.

* n_duplication (int)— the number for multiple calculations.

simulate_shift (perturb_condition=None, GRN_unit=None, n_propagation=3, ig-

nore_warning=False)
Simulate signal propagation with GRNs. Please see the CellOracle paper for details. This function sim-

ulates a gene expression pattern in the near future. Simulated values will be stored in anndata.layers:
[“simulated_count”]

The simulation use three types of data. (1) GRN inference results (coef_matrix). (2) Perturb_condition:
You can set arbitrary perturbation condition. (3) Gene expression matrix: The simulation starts from
imputed gene expression data.

Parameters

* perturb_condition (dictionary) — condition for perturbation. if you want to
simulate knockout for GeneX, please set [perturb_condition={“GeneX”: 0.0}] Although
you can set any non-negative values for the gene condition, avoid setting biologically
infeasible values for the perturb condition. It is strongly recommended to check gene
expression values in your data before selecting the perturb condition.

* GRN_unit (str) - GRN type. Please select either “whole” or “cluster”. See the docu-
mentation of “fit_GRN_for_simulation” for the detailed explanation.

* n_propagation (int) — Calculation will be performed iteratively to simulate signal
propagation in GRN. You can set the number of steps for this calculation. With a higher

23.

API 127

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

celloracle, Release 0.8.4

number, the results may recapitulate signal propagation for many genes. However, a higher
number of propagation may cause more error/noise.

suggest_mass_thresholds (n_suggestion=12, s=1, n_col=4)

summarize_mc_results_by cluster (cluster_use, random=False)
This function summarizes the simulated cell state-transition by groping the results into each cluster. It
returns sumarized results as a pandas.DataFrame.

Parameters cluster_use (str)—cluster information name in anndata.obs. You can use any
arbitrary cluster information in anndata.obs.

to_hdf£5 (file_path)
Save object as hdf5.

Parameters file_path (str) — file path to save file. Filename needs to end with ‘.cellor-
acle.oracle’

updateTFinfo_dictionary (TFdict={})
Update a TF dictionary. If a key in the new TF dictionary already exists in the old TF dictionary, old values
will be replaced with a new one.

Parameters TFdict (dictionary)— Python dictionary of TF info.

celloracle.check_python_requirements (return_detail=True, print_warning=True)
Check installation status and requirements of dependant libraries.

celloracle.load_hdf£5 (file_path, object_class_name=None)
Load an object of celloracle’s custom class that was saved as hdf5.

Parameters
» file path (str)—file_path.

* object_class_name (str)— Types of object. If it is None, object class will be identi-
fied from the extension of file_name. Default is None.

celloracle.test_R libraries_installation (show_all_stdout=False)
CellOracle.network_analysis use several R libraries for network analysis. This is a test function to check for
instalation of the necessary R libraries.

Modules for ATAC-seq analysis

celloracle.motif_analysis module

The motif analysis module implements transcription factor motif scan.

Genomic activity information (peak of ATAC-seq or Chip-seq) is extracted first. Then the peak DNA
sequence will be subjected to TF motif scan. Finally we will get list of TFs that potentially binds to a
specific gene.

class celloracle.motif_analysis.TFinfo (peak_data_frame, ref genome)
Bases: object

This is a custom class for motif analysis in celloracle. TFinfo object performs motif scan using
the TF motif database in gimmemotifs and several functions of genomepy. Analysis results can be
exported as a python dictionary or dataframe. These files; python dictionary of dataframe of TF
binding information, are needed during GRN inference.

peak_df
dataframe about DNA peak and target gene data.

128 Chapter 2. Contents

celloracle, Release 0.8.4

Type pandas.dataframe

all_target_gene
target genes.
Type array of str

ref_ genome
reference genome name that was used in DNA peak generation.
Type str

scanned_df
Results of motif scan. Key is a peak name. Value is a dataframe of motif scan.

Type dictionary

dic_targetgene2TFs
Final product of motif scan. Key is a target gene. Value is a list of regulatory candidate genes.
Type dictionary

dic_peak2Targetgene
Dictionary. Key is a peak name. Value is a list of the target gene.
Type dictionary

dic_TF2targetgenes
Final product of motif scan. Key is a TF. Value is a list of potential target genes of the TF.

Type dictionary

copy ()
Deepcoty itself.

filter_motifs_by_score (threshold, method='cumlative_score')
Remove motifs with low binding scores.
Parameters method (str) — thresholding method. Select either of [“indivi-

CEINT3

sual_score”, “cumlative_score”]

filter_peaks (peaks_to_be_remained)
Filter peaks.
Parameters peaks_to_be_remained (array of str) - list of peaks. Peaks
that are NOT in the list will be removed.

make_TFinfo_dataframe_and_dictionary (verbose=True)
This is the final step of motif_analysis. Convert scanned results into a data frame and dictionar-
ies.
Parameters verbose (bool)— Whether to show a progress bar.

reset_dictionary_and df ()
Reset TF dictionary and TF dataframe. The following attributes will be erased: TF_onehot,
dic_targetgene2TFs, dic_peak2Targetgene, dic_TF2targetgenes.

reset_filtering()
Reset filtering information. You can use this function to stat over the filtering step with
new conditions. The following attributes will be erased: TF_onehot, dic_targetgene2TFs,
dic_peak2Targetgene, dic_TF2targetgenes.

save_as_parquet (folder_path=None)
Save itself. Some attributes are saved as parquet file.
Parameters folder_path (str)— folder path

scan (background_length=200, fpr=0.02, n_cpus=- 1, verbose=True, motifs=None,
TF_evidence_level="direct_and_indirect', TF_formatting="auto’', divide=100000)
Scan DNA sequences searching for TF binding motifs.
Parameters

2.3. API

129

celloracle, Release 0.8.4

* background_length (int)— background length. This is used for the calcu-
lation of the binding score.

* fpr (float) — False positive rate for motif identification.

* n_cpus (int) — number of CPUs for parallel calculation.

* verbose (bool)— Whether to show a progress bar.

* motifs (1ist)— alist of gimmemotifs motifs, will revert to default_motifs() if
None

e TF_evidence_level (str) — Please select one from [“direct”, “di-
rect_and_indirect”]. If “direct” is selected, TFs that have a binding evidence
were used. If “direct_and_indirect” is selected, TFs with binding evidence and
inferred TFs are used. For more information, please read explanation of Mo-
tif class in gimmemotifs documentation (https://gimmemotifs.readthedocs.io/en/
master/index.html)

to_dataframe (verbose=True)

Return results as a dataframe. Rows are peak_id, and columns are TFs.
Parameters verbose (bool)— Whether to show a progress bar.
Returns TFinfo matrix.

Return type pandas.dataframe

to_dictionary (dictionary_type='"targetgene2TFs', verbose=True)
Return TF information as a python dictionary.

Parameters dictionary_ type (str)— Type of dictionary. Select from [“target-
gene2TFs”, “TF2targetgenes”]. If you chose “targetgene2TFs”, it returns a dictio-
nary in which a key is a target gene, and a value is a list of regulatory candidate
genes (TFs) of the target. If you chose “TF2targetgenes”, it returns a dictionary in
which a key is a TF and a value is a list of potential target genes of the TF.

Returns dictionary.

Return type dictionary

to_hdf£s5 (file_path)
Save object as hdf5.
Parameters file_path (str) — file path to save file. Filename needs to end with
‘.celloracle.tfinfo’

celloracle.motif_analysis.get_tss_info (peak_str_list, ref_genome,
verbose=True, cus-

tom_tss_file_path=None)
Get annotation about Transcription Starting Site (TSS).

Parameters

* peak_str_list (list of str) — list of peak_id. e.g.,
[“chr5_0930303_9499409”, “chr11_123445555_123445577"]

* ref genome (str) - reference genome name.
* verbose (bool) — verbosity.

* custom_tss_file_path (str) — File path to the custom TSS reference bed
file. If you just want to use reference genome that are supported in the CellOracle,
you don’t need to set this parameter.

celloracle.motif_analysis.integrate_tss_peak_with_cicero (tss_peak, ci-

))) _ cero_connections)
Process output of cicero data and returns DNA peak information for motif analysis in celloracle.

Please see the celloracle tutorial for more information.

Parameters

130 Chapter 2. Contents

https://gimmemotifs.readthedocs.io/en/master/index.html
https://gimmemotifs.readthedocs.io/en/master/index.html

celloracle, Release 0.8.4

* tss_peak (pandas.dataframe) — dataframe about TSS information. Please
use the function, “get_tss_info” to get this dataframe.

* cicero_connections (dataframe) — dataframe that stores the results of ci-
cero analysis.

Returns DNA peak about promoter/enhancer and its annotation about target gene.
Return type pandas.dataframe

celloracle.motif_analysis.is_genome_installed (ref_genome)
Celloracle motif_analysis module uses gimmemotifs and genomepy internally. Reference genome
files should be installed in the PC to use gimmemotifs and genomepy. This function checks the
installation status of the reference genome.

Parameters ref_genome (str)—names of reference genome. i.e., “mm10”, “hg19”

celloracle.motif_analysis.load_TFinfo (file_path)
Load TFinfo object which was saved as hdf5 file.

Parameters file_path (str) —file path.
Returns Loaded TFinfo object.
Return type TFinfo

celloracle.motif_analysis.load TFinfo_from_parquets (folder_path)
Load TFinfo object which was saved with the function; “save_as_parquet”.

Parameters folder_path (str) — folder path
Returns Loaded TFinfo object.
Return type TFinfo

celloracle.motif_analysis.load_motifs (motifs_name)
Load motifs from celloracle motif database

Parameters motifs_name (str)— Name of motifs.
Returns List of gimmemotifs.motif object.
Return type list

celloracle.motif_analysis.make_TFinfo_ from_ scanned_ file (path_to_raw_bed,
path_to_scanned_result_bed,

ref_genome)
This function is currently an available.

celloracle.motif_analysis.peak2fasta (peak_ids, ref genome)
Convert peak_id into fasta object.

Parameters

e peak_id(str or list of str)-Peak_id. e.g. “chr5_0930303_9499409”
or it can be a list of peak_id. e.g. [“chr5_0930303_9499409”,
“chrl11_123445555_123445577"]

* ref_genome (str) — Reference genome name. e.g. “mm9”, “mm10”, “hgl19”
etc

Returns DNA sequence in fasta format
Return type gimmemotifs fasta object

celloracle.motif_analysis.read_bed (bed_path)
Load bed file and return as dataframe.

23.

API 131

celloracle, Release 0.8.4

Parameters bed_path (st r) — File path.
Returns bed file in dataframe.
Return type pandas.dataframe

celloracle.motif_analysis.remove_zero_sed (fasta_object)
Remove DNA sequence with zero length

celloracle.motif_analysis.scan_dna_for motifs (scanner_object, mo-
tifs_object, sequence_object,
divide=100000, ver-
bose=True)

This is a wrapper function to scan DNA sequences searchig for Gene motifs.
Parameters
* scanner_object (gimmemotifs.scanner)— Object that do motif scan.
* motifs_object (gimmemotifs.motifs)— Object that stores motif data.

* sequence_object (gimmemotifs.fasta) — Object that stores sequence
data.

Returns scan results is stored in data frame.

Return type pandas.dataframe

Modules for Network analysis

celloracle.network_analysis module

The network_analysis module implements Network analysis.

class celloracle.network_analysis.Links (name, links_dict={})
Bases: object

This is a class for the processing and visualization of GRNs. Links object stores cluster-specific
GRNs and metadata. Please use “get_links” function in Oracle object to generate Links object.

links_dict
Dictionary that store unprocessed network data.

Type dictionary

filtered_links
Dictionary that store filtered network data.
Type dictionary

merged_score
Network scores.
Type pandas.dataframe

cluster
List of cluster name.
Type list of str

name
Name of clustering unit.
Type str

palette
DataFrame that store color information.

132 Chapter 2. Contents

celloracle, Release 0.8.4

Type pandas.dataframe

filter_links (p=0.001, weight="coef_abs’, threshold_number=10000,

genelist_source=None, genelist_target=None, thread_number=None)
Filter network edges. In most cases, inferred GRN has non-significant random edges. We have

to remove these edges before analyzing the network structure. You can do the filtering in any

of the following ways.

(1) Filter based on the p-value of the network edge. Please enter p-value for thresholding.

(2) Filter based on network edge number. If you set the number, network edges will be filtered
based on the order of a network score. The top n-th network edges with network weight
will remain, and the other edges will be removed. The network data has several types of
network weight, so you have to select which network weight do you want to use.

(3) Filter based on an arbitrary gene list. You can set a gene list for source nodes or target
nodes.

Parameters
* p (float) - threshold for p-value of the network edge.
* weight (str) — Please select network weight name for the filtering
* genelist_source (list of str)— gene list to remain in regulatory gene
nodes. Default is None.
* genelist_target (list of str) — gene list to remain in target gene
nodes. Default is None.

get_network_entropy (value='coef_abs')
Calculate network entropy scores.
Parameters value (str)— Defaultis “coef abs”.

get_score (test_mode=False)
Get several network sores using R libraries. Make sure all dependent R libraries are installed in
your environment before running this function. You can check the installation for the R libraries
by running test_installation() in network_analysis module.

plot_cartography scatter_per_ cluster (gois=None, clusters=None,
scatter=True, kde=False,
auto_gene_annot=False, per-
centile=98, args_dot={'n_levels'":
105}, args_line={'c": 'gray'},
args_annot={}, save=None)
Make a gene network cartography plot. Please read the original paper describing gene network
cartography for more information. https://www.nature.com/articles/nature03288
Parameters
* links (Links) — See network_analysis.Links class for detail.
* gois (I1ist of srt)—Listof gene name to highlight.
* clusters (1ist of str) — List of cluster name to analyze. If None, all
clusters in Links object will be analyzed.
* scatter (bool)— Whether to make a scatter plot.
* auto_gene_annot (bool)— Whether to pick up genes to make an annotation.
* percentile (float) — Genes with a network score above the percentile will
be shown with annotation. Default is 98.
* args_dot (dictionary)— Arguments for scatter plot.
* args_line (dictionary)— Arguments for lines in cartography plot.
* args_annot (dictionary)— Arguments for annotation in plots.
* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_cartography_ term (goi, save=None, plt_show=True)

2.3. API 133

https://www.nature.com/articles/nature03288

celloracle, Release 0.8.4

Plot the gene network cartography term like a heatmap. Please read the original paper of gene
network cartography for the principle of gene network cartography. https://www.nature.com/
articles/nature03288
Parameters
* links (Links) — See network_analysis.Links class for detail.
* gois (1ist of srt)—Listof gene name to highlight.
* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_degree_distributions (plot_model=False, save=None)
Plot the network degree distributions (the number of edge per gene). The network degree will
be visualized in both linear scale and log scale.
Parameters
* links (Links) — See network_analysis.Links class for detail.
* plot_model (bool)— Whether to plot linear approximation line.
* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_network_entropy_ distributions (update_network_entropy=False,

save=None)
Plot the distribution for network entropy. See the CellOracle paper for more detail.

Parameters

* links (Links object)— See network_analysis.Links class for detail.

e values (1ist of str) — The list of score to visualize. If it is None, all
network score (listed above) will be used.

* update_network_entropy (bool) — Whether to recalculate network en-
tropy.

* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_score_comparison_2D (value, clusterl, cluster2, percentile=99, an-
not_shifts=None, save=None, plt_show=True, inter-

active=False))
Make a scatter plot that compares specific network scores in two groups.

Parameters

* links (Links) — See network_analysis.Links class for detail.

* value (srt)— The network score type.

¢ clusterl (str)— Cluster name. Network scores in cluster] will be visualized
in the x-axis.

¢ cluster2 (str)— Cluster name. Network scores in cluster2 will be visualized
in the y-axis.

* percentile (float)— Genes with a network score above the percentile will
be shown with annotation. Default is 99.

* annot_shifts ((float, float))— Annotation visualization setting.

* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_score_discributions (values=None, method="boxplot', save=None)
Plot the distribution of network scores. An individual data point is a network edge (gene).
Parameters
e links (Links) — See Links class for details.
e values (1ist of str)-Thelistof score to visualize. If it is None, all of the

134 Chapter 2. Contents

https://www.nature.com/articles/nature03288
https://www.nature.com/articles/nature03288

celloracle, Release 0.8.4

network score will be used.

* method (str) — Plotting method. Select either “boxplot” or “barplot”.

* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_score_per_cluster (goi, save=None, plt_show=True)
Plot network score for a gene. This function visualizes the network score for a specific gene
between clusters to get an insight into the dynamics of the gene.
Parameters
* links (Links) — See network_analysis.Links class for detail.
* goi (srt)— Gene name.
* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

plot_scores_as_rank (cluster, n_gene=50, save=None)
Pick up top n-th genes wich high-network scores and make plots.
Parameters

* links (Links) — See network_analysis.Links class for detail.

* cluster (str)— Cluster name to analyze.

* n_gene (int)— Number of genes to plot. Default is 50.

* save (str) — Folder path to save plots. If the folder does not exist in the path,
the function creates the folder. Plots will not be saved if [save=None]. Default is
None.

to_hdf£S5 (file_path)
Save object as hdf5.
Parameters file_path (str) — file path to save file. Filename needs to end with

‘.celloracle.links’

celloracle.network_analysis.draw_network (linkList, return_graph=False)
Plot network graph.

Parameters
e linkList (pandas.DataFrame)— GRN saved as linkList.
* return_graph (bool)— Whether to return graph object.
Returns Network X graph objenct.
Return type Graph object

celloracle.network_analysis.get_R path()

celloracle.network_analysis.get_links (oracle_object, clus-
ter_name_for_GRN_unit=None, al-
pha=10, bagging_number=20, ver-
bose_level=1, test_mode=Fualse,

model_method='bagging_ridge')
Make GRN for each cluster and returns results as a Links object. Several preprocessing should be

done before using this function.
Parameters
* oracle_object (Oracle) - See Oracle module for detail.

* cluster_name_ for_GRN_unit (str) — Cluster name for GRN calculation.
The cluster information should be stored in Oracle.adata.obs.

23.

API 135

celloracle, Release 0.8.4

alpha (float or int) — The strength of regularization. If you set a lower
value, the sensitivity increases, and you can detect weaker network connections.
However, there may be more noise. If you select a higher value, it will reduce the
chance of overfitting.

bagging_number (int)— The number used in bagging calculation.

verbose_level (int) — if [verbose_level>1], most detailed progress informa-
tion will be shown. if [verbose_level > 0], one progress bar will be shown. if
[verbose_level == 0], no progress bar will be shown.

test_mode (bool) - If test_mode is True, GRN calculation will be done for only
one cluster rather than all clusters.

model_method (str) — Chose modeling algorithm. “bagging_ridge” or
“bayesian_ridge”

celloracle.network_analysis.linkList_to_networkgraph (filteredlinkList)
Convert linkList into Graph object in NetworkX.

Parameters filteredlinkList (pandas.DataFrame)— GRN saved as linkList.
Returns Network X graph objenct.
Return type Graph object

celloracle.network_analysis.load_links (file_path)
Load links object saved as a hdf5 file.

Parameters file_path (str) — file path.

Returns loaded links object.

Return type Links
celloracle.network_analysis.set_R_path (R_path)

celloracle.network_analysis.test_R_libraries_installation (show_all_stdout=False)
CellOracle.network_analysis use several R libraries for network analysis. This is a test function to
check for instalation of the necessary R libraries.

celloracle.network_analysis.transfer scores_from_ links_to_adata (adata,
links,

)) . method="median")
Transfer the summary of network scores (median or mean) per group from Links object into adata.

Parameters
¢ adata (anndata) — anndata
e links (Links) - Likns object

¢ method (st r) - The method to summarize data.

136 Chapter 2. Contents

celloracle, Release 0.8.4

Other modules

celloracle.go_analysis module

The go_analysis module implements Gene Ontology analysis. This module use goatools

internally.

celloracle.go_analysis.geneID2Symbol (IDs, species='mouse’)
Convert Entrez gene id into gene symbol.
Parameters
e IDs (array of str)- Entrez gene id.
* species (str)— Select species. Either “mouse” or “human”.
Returns Gene symbol
Return type list of str

celloracle.go_analysis.geneSymbol2ID (symbols, species='mouse")
Convert gene symbol into Entrez gene id.
Parameters
* symbols (array of str)- gene symbol
* species (str)— Select species. Either “mouse” or “human”
Returns Entrez gene id
Return type list of str

celloracle.go_analysis.get_GO (gene_query, species="mouse’)
Get Gene Ontologies (GOs).
Parameters
* gene_query (array of str)-— gene list.
* species (str)— Select species. Either “mouse” or “human”
Returns GO analysis results as dataframe.
Return type pandas.dataframe

celloracle.utility module

The utility module has several functions that support celloracle.

celloracle.utility.exec_process (commands, message=True,
wait_finished=True, re-
turn_process=True)
Excute a command. This is a wrapper of “subprocess.Popen”
Parameters

¢ commands (str)— command.

* message (bool)— Whether to return a message or not.

* wait_finished (bool)— Whether or not to wait for the process to fin-
ish. If false, the process will be perfomed in background and the function
will finish immediately

* return_process (bool)— Whether to return “process”.

celloracle.utility.intersect (listl, list2)
Intersect two list and get components that exists in both list.
Parameters
e listl (1ist)—input list.
* list2 (1ist)—input list.
Returns intersected list.
Return type list

2.3. API

137

celloracle, Release 0.8.4

celloracle.utility.knn_data_transferer (adata_ref, adata_que,
n_neighbors=20, clus-
ter_name=None, em-
bedding_name=None,
adata_true=None, trans-

fer_color=True, n_PCA=30,
use_PCA_in_adata=False,

meta_data=None)
Extract categorical information from adata.obs or embedding information from

adata.obsm and transfer these information into query anndata. In the calculation, KNN
is used after PCA.
Parameters

e adata_ref (anndata) — reference anndata

* adata_que (anndata) — query anndata

* cluster_name (str or list of str) — cluster name(s) to be
transfered. If you want to transfer multiple data, you can set the cluster
names as a list.

* embedding_name (str or list of str)-embedding name(s) to
be transfered. If you want to transfer multiple data, you can set the embed-
ding names as a list.

* adata_true (str)- This argument can be used for the validataion of this
algorithm. If you have true answer, you can set it. If you set true answer, the
function will return some metrics for benchmarking.

* transfer color (bool)— Whether or not to transfer color data in ad-
dition to cluster information.

* n_PCA (int) — Number of PCs that will be used for the input of KNN
algorithm.

celloracle.utility.load_hd£5 (file_path, object_class_name=None)
Load an object of celloracle’s custom class that was saved as hdf5.
Parameters
* file path (str)—file_path.
* object_class_name (str)— Types of object. If it is None, object class
will be identified from the extension of file_name. Default is None.

celloracle.utility.load _pickled_object (filepath)
Load pickled object.
Parameters filepath (str) - file path.
Returns loaded object.
Return type python object

class celloracle.utility.makelog (file_name=None, directory=None)
Bases: object

This is a class for making log.

info (comment)
Add comment into the log file.
Parameters comment (str) - comment.

celloracle.utility.save_as_pickled_object (obj, filepath)
Save any object using pickle.
Parameters
* obj (any python object)— python object.
* filepath (str) - file path.

celloracle.utility.standard (df)
Standardize value.

138 Chapter 2. Contents

celloracle, Release 0.8.4

Parameters df (padas.dataframe)— dataframe.
Returns Data after standardization.
Return type pandas.dataframe

celloracle.utility.transfer_all_colors_between_anndata (adata_ref,

adata_que)
Extract all color information from reference anndata and transfer the color into query
anndata.
Parameters

* adata_ref (anndata) — reference anndata
* adata_que (anndata) — query anndata

celloracle.utility.transfer color_between_anndata (adata_ref,
adata_que,
clus-

ter_name)
Extract color information from reference anndata and transfer the color into query anndata.

Parameters
e adata_ref (anndata) — reference anndata
* adata_gque (anndata) — query anndata
* cluster_name (str) — cluster name. This information should exist in
the anndata.obs.

celloracle.utility.update_adata (adata)

celloracle.data module

The data module implements data download and loading.

celloracle.data.load_Celegans_promoter_base_GRN (version='cel0_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_Scerevisiae promoter_ base GRN (version='sacCer3_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load _TFinfo_df mm9_ mouse_atac_atlas ()
Load Transcription factor binding information made from mouse scATAC-seq atlas
dataset. mm9 genome was used for the reference genome.

Args:
Returns TF binding info.
Return type pandas.dataframe

celloracle.data.load_arabidopsis_promoter_base_GRN (version="TAIRIO_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

. API 139

celloracle, Release 0.8.4

celloracle.data.load_chicken_promoter_ base_GRN (version="galGal6_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_drosophila_promoter_base_GRN (version="'dm6_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_human_promoter_ base_GRN (version="hgl9_gimmemotifsv5_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_mouse_promoter_base_GRN (version="mmlil0_gimmemotifsv5S_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_rat_promoter_ base_GRN (version='"rn6_gimmemotifsvS_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_tutorial_links_object ()
celloracle.data.load_tutorial_oracle_object ()

celloracle.data.load_xenopus_tropicalis_promoter_base_GRN (version="xenTro3_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

celloracle.data.load_zebrafish promoter_base_GRN (version='danRerll_CisBPv2_fpr2')
Load Base GRN made from promoter DNA sequence and motif scan.

Args:
Returns Base GRN as a matrix.
Return type pandas.dataframe

140 Chapter 2. Contents

celloracle, Release 0.8.4

celloracle.data_conversion module

The data_conversion module implements data conversion between different platform.

celloracle.data_conversion.seurat_object_to_anndata (file_path_seurat_object,

delete_tmp_file=True)
Convert seurat object into anndata.

Parameters
 file path_seurat_object (str)—File path of seurat object. Seurat
object should be saved as Rds format.
* delete_tmp_file (bool)— Whether to delete temporary file.
Returns anndata object.
Return type anndata

2.4 Changelog

* 0.84 <2021-12-29>
- Code refactoring in simulation results visualization function.
- Code refactoring in motif analysis module.
- Add TSS data for Guinea Pig reference genome, Cavpor3.0.
* 0.8.3<2021-11-25>
-> Fix typo in the Markov walk function. The function is currently deplicated.
* 0.8.3<2021-11-25>
- Fix typo in the Markov walk function. The function is currently deplicated.
* 0.8.2<2021-10-31>
- Code refactoring in motif analysis module.
* 0.8.1 <2021-10-30>
- Change requirements.

0.8.0 <2021-08-28>

- Change requirements. From this version, numba>=0.50.1 is required.
- Update installation page in documentation.

0.7.5 <2021-07-28>

- Correct requirements.txt file name.

0.7.4 <2021-07-27>

- Update Arabidopsis promoter base GRN data.
0.7.3 <2021-07-25>

- Update Arabidopsis motif data.
0.7.0 <2021-07-16>

- Overhaul documentation.

0.7.0 <2021-07-11>

- Add pre-built promoter base GRNS.

2.4. Changelog 141

celloracle, Release 0.8.4

0.7.1 <2021-07-15>
- Aad function for oracle transition probability calculation.

0.7.0 <2021-07-11>

- Add pre-built promoter base GRNs.
0.6.17 <2021-07-08>

- Add chcken and guinea pig motif
- Update Arabidopsis ref genome name

0.6.12 <2021-06-11>

- Add functions to oracle object to check current data status.

0.6.11 <2021-06-09>

- Add data loading function. Demo oracle data and links data can be loaded using data loadig functions.

0.6.9 <2021-05-14>

- Code refactoring in network visualization.

0.6.8 <2021-05-10>

- Update Seurat data conversion module.

0.6.8 <2021-05-08>

- Change requirements. From this version, numba=0.48.0 is required.

0.6.7 <2021-05-5>

- Add function to check status of installed dependent package version.

0.6.5 <2021-03-25>

- Minor bug fix in the installation process.

0.6.4 <2021-02-18>

- Minor change for oracle object. Metadata will be shown if you print oracle object.
- Add new function to oracle class.

0.6.3 <2021-01-26>

- Big fix to solve [this issue](https://github.com/morris-lab/CellOracle/issues/42).
- Bug fix. Anndata>=0.7.5 is required.
0.6.2 <2021-12-16>

- Big fix. h5py>=3.1.0 is required.
0.6.0 <2021-12-14>

- Add new modules: dev_modules and analysis_helper.

0.5.1 <2020-08-4>

- Add new promoter-TSS reference data for several reference genomes; (1)”Xenopus™: [“xenTro2”,
“xenTro3”], (2)"Rat”: [“rn4”, “rn5”, “rn6”], (3)”Drosophila”: [“dm3”, “dm6”], (4)”C.elegans”: [“ce6”,
“cel0], (5)”Arabidopsis™: [“tair10”].

- Add new motif data for several species: “Xenopus”, “Rat”, “Drosophila”, “C.elegans” and “Arabidop-

29

S1S .

142 Chapter 2. Contents

https://github.com/morris-lab/CellOracle/issues/42

celloracle, Release 0.8.4

0.5.0 <2020-08-3>

- Add new functions for custom motifs. You can select motifs from several options. Also, we updated our
web tutorial to introduce how to load / make different motif data.

- Change default motifs for S.cerevisiae and zebrafish.

- Change requirements for dependent package: gimmemotifs and geomepy. Celloracle codes were up-
dated to support new version of gimmemotifs (0.14.4) and genomepy (0.8.4).

0.4.2 <2020-07-14>

- Add promoter-TSS information for zebrafish reference genome (danRer7, danRer10 and danRer11).

0.4.1 <2020-07-02>

- Add promoter-TSS information for S.cerevisiae reference genome (sacCer2 and sacCer3).

0.4.0 <2020-06-28>

- Change requirements.
- From this version, pandas version 1.0.3 or later is required.
- From this version, scanpy version 1.5.3 or later is required.

0.3.7 <2020-06-12>

- Delete GO function from r-script
- Update some functions for network visualization

0.3.6 <2020-06-08>

- Fix a bug on the transition probability calculation in Markov simulation
- Add new function “count_cells_in_mc_results” to oracle class

0.3.5 <2020-05-09>

- Fix a bug on the function for gene cortography visualization
- Change some settings for installation
- Update data conversion module

0.3.4 <2020-04-29>

- Change pandas version restriction
- Fix a bug on the function for gene cortography visualization
- Add new functions for R-path configuration

0.3.3 <2020-04-24>

- Add promoter-TSS information for hg19 and hg38 reference genome

0.3.1 <2020-03-23>

- Fix an error when try to save file larger than 4GB file

0.3.0 <2020-2-17>

- Release beta version

2.4. Changelog 143

celloracle, Release 0.8.4

2.5 License

The software is provided under a modified Apache License Version 2.0. The software may be used for non-commercial
academic purposes only. For any other use of the Work, including commercial use, please contact Morris lab.

Copyright 2020 Kenji Kamimoto, Christy Hoffmann, Samantha Morris

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

“Work™ shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of dis-
cussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been
received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare
Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works
in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You
a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent
license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies
only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone

144 Chapter 2. Contents

http://www.apache.org/licenses/

celloracle, Release 0.8.4

or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium,
with or without modifications, and in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text
file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License.
You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum
to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for
inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product
names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and
each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or
otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential
damages of any character arising as a result of this License or out of the use or inability to use the Work (including
but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may
choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and

2.5. License 145

celloracle, Release 0.8.4

hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
“[1” replaced with your own identifying information. (Don’t include the brackets!) The text should be enclosed in
the appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright 2020 Kenji Kamimoto, Christy Hoffmann, Samantha Morris

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

2.6 Authors and citations

2.6.1 Cite celloracle

If you use celloracle please cite our bioarxiv preprint CellOracle: Dissecting cell identity via network inference and in
silico gene perturbation.

2.6.2 celloracle software development

celloracle is developed and maintained by Kenji Kamimoto and members of Samantha Morris Lab. Please post
troubles or questions on the Github repository.

2.7 Contact

2.7.1 CellOracle code issues

Please post troubles or questions on the Github repository issue page . Also, please look at the closed issue pages .
This might give an answer to your question.

146 Chapter 2. Contents

http://www.apache.org/licenses/LICENSE-2.0
https://www.biorxiv.org/content/10.1101/2020.02.17.947416v3
https://www.biorxiv.org/content/10.1101/2020.02.17.947416v3
http://morrislab.wustl.edu/lab-members/
https://github.com/morris-lab/CellOracle/issues
https://github.com/morris-lab/CellOracle/issues
https://github.com/morris-lab/CellOracle/issues?q=is%3Aissue+is%3Aclosed

celloracle, Release 0.8.4

2.7.2 Inquiry for collabolation or discussion

Please send e-mail to us if you want a discussion with us.
 Lab PI: Samantha Morris
* Principal code developer: Kenji Kamimoto

E-mail address can be found here.

Warning: The e-mail address is NOT for the technical support. Please do not send e-mail about code issue. If
you have trouble or question about codes, please post the technical issue on the CellOracle Github repository issue

page.

2.7. Contact 147

http://morrislab.wustl.edu/lab-members/
https://github.com/morris-lab/CellOracle/issues
https://github.com/morris-lab/CellOracle/issues

celloracle, Release 0.8.4

148 Chapter 2. Contents

CHAPTER
THREE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

149

celloracle, Release 0.8.4

150 Chapter 3. Indices and tables

C

celloracle,
celloracle.
.data_conversion, 141
.go_analysis, 137

celloracle.
celloracle.
celloracle.

celloracle
celloracle

117
data, 139

motif_analysis, 128
network_analysis, 132
utility, 137

PYTHON MODULE INDEX

151

celloracle, Release 0.8.4

152 Python Module Index

A

adata (celloracle.Oracle attribute), 124
addAnnotation () (celloracle.Net method), 122
addTFinfo_dictionary () (celloracle.Net
method), 122
addTFinfo_dictionary ()
method), 124
addTFinfo_matrix () (celloracle.Net method), 122
all_genes (celloracle.Net attribute), 121
all_target_gene (celloracle.motif_analysis. TFinfo
attribute), 129
annotation (celloracle.Net attribute), 121

C

calculate_mass_filter ()
method), 124
calculate_p_mass ()
124
celloracle
module, 117
celloracle.data
module, 139
celloracle.data_conversion
module, 141
celloracle.go_analysis
module, 137
celloracle.motif_analysis
module, 128
celloracle.network_analysis
module, 132
celloracle.utility
module, 137
cellstate (celloracle.Net attribute), 121
change_cluster_unit () (celloracle.Oracle
method), 124
check_python_requirements () (in module cel-
loracle), 128
cluster (celloracle.Links attribute), 117
cluster (celloracle.network_analysis.Links attribute),
132
cluster_column_name
tribute), 124

(celloracle.Oracle

(celloracle.Oracle

(celloracle.Oracle method),

(celloracle.Oracle at-

INDEX

coefs_dict (celloracle.Net attribute), 121

copy () (celloracle.motif_analysis.TFinfo method), 129

copy () (celloracle.Net method), 122
)

copy () (celloracle.Oracle method), 124

count_cells_in mc_resutls() (cellor-
acle.Oracle method), 124

D

dic_peak2Targetgene (cellor-

acle.motif _analysis.TFinfo attribute), 129
dic_targetgenelTFs (cellor-
acle.motif_analysis. TFinfo attribute), 129
dic_TF2targetgenes (cellor-
acle.motif_analysis. TFinfo attribute), 129
draw_network () (in module cellor-
acle.network_analysis), 135

E

embedding_name (celloracle.Net attribute), 121

embedding_name (celloracle.Oracle attribute), 124

exec_process () (in module celloracle.utility), 137

extract_active_gene_lists|() (cellor-
acle.Oracle method), 124

F

failed_genes (celloracle.Net attribute), 121

filter_links () (celloracle.Links method), 117

filter_links () (celloracle.network_analysis.Links
method), 133

filter_motifs_by_score () (cellor-
acle.motif_analysis.TFinfo method), 129

filter_peaks () (celloracle.motif_analysis.TFinfo
method), 129

filtered_links (celloracle.Links attribute), 117

filtered_links (celloracle.network_analysis.Links
attribute), 132

fit_All_genes () (celloracle.Net method), 122

fit_All_genes_parallel () (celloracle.Net
method), 122

fit_genes () (celloracle.Net method), 122

fit_GRN_for_simulation () (celloracle.Oracle
method), 125

153

celloracle, Release 0.8.4

fitted_genes (celloracle.Net attribute), 121

G

gem (celloracle.Net attribute), 121
gem_standerdized (celloracle.Net attribute), 121

geneID2Symbol () (in module cellor-
acle.go_analysis), 137
geneSymbol21ID () (in module cellor-

acle.go_analysis), 137

get_cluster_specific_TFdict_from_Links ()

(celloracle.Oracle method), 125
get_GO () (in module celloracle.go_analysis), 137
get_links () (celloracle.Oracle method), 125

get_links () (in module cellor-
acle.network_analysis), 135
get_mcmc_cell_transition_table () (cellor-

acle.Oracle method), 125
get_network_entropy ()
method), 118
get_network_entropy () (cellor-
acle.network_analysis.Links method), 133
get_R_path() (in module cellor-
acle.network_analysis), 135
get_score () (celloracle.Links method), 118
get_score () (celloracle.network_analysis.Links
method), 133
get_tss_info () (in
acle.motif _analysis), 130

(celloracle.Links

module cellor-

import_anndata_as_normalized_count ()
(celloracle.Oracle method), 126
import_anndata_as_raw_count ()
acle.Oracle method), 126
import_TF_data () (celloracle.Oracle method), 125
info () (celloracle.utility.makelog method), 138
integrate_tss_peak_with_cicero () (in mod-
ule celloracle.motif_analysis), 130
intersect () (in module celloracle.utility), 137

(cellor-

is_genome_installed() (in module cellor-
acle.motif _analysis), 131

K

knn_data_transferer () (in module cellor-

acle.utility), 137

L

library_last_update_date (celloracle.Net at-
tribute), 121

linkList (celloracle.Net attribute), 121

linkList_to_networkgraph () (in module cellor-
acle.network_analysis), 136

Links (class in celloracle), 117

Links (class in celloracle.network_analysis), 132
links_dict (celloracle.Links attribute), 117
links_dict (celloracle.network_analysis.Links
attribute), 132
load_arabidopsis_promoter_base_GRN () (in
module celloracle.data), 139
load_Celegans_promoter_base_GRN () (in
module celloracle.data), 139
load_chicken_promoter_base_GRN () (in mod-
ule celloracle.data), 139
load_drosophila_promoter_base_GRN() (in
module celloracle.data), 140
load_hdf5 () (in module celloracle), 128
load_hdf5 () (in module celloracle.utility), 138
load_human_promoter_base_GRN () (in module
celloracle.data), 140

load_links () (in module cellor-
acle.network_analysis), 136
load_motifs () (in module cellor-

acle.motif_analysis), 131
load_mouse_promoter_base_GRN () (in module
celloracle.data), 140
load_pickled_object () (in
acle.utility), 138
load_rat_promoter_base_GRN () (in module cel-
loracle.data), 140
load_Scerevisiae_promoter_base_GRN () (in
module celloracle.data), 139
load_TFinfo () (in module
acle.motif_analysis), 131
load_TFinfo_df_mm9_mouse_atac_atlas()
(in module celloracle.data), 139
load_TFinfo_from_parquets () (in module cel-
loracle.motif _analysis), 131
load_tutorial_links_obJject () (in module cel-
loracle.data), 140
load_tutorial_oracle_obiject ()
celloracle.data), 140

module cellor-

cellor-

(in module

load_xenopus_tropicalis_promoter_base_GRN ()

(in module celloracle.data), 140
load_zebrafish_promoter_base_GRN () (in
module celloracle.data), 140

M

make_TFinfo_dataframe_and_dictionary ()
(celloracle.motif _analysis.TFinfo method), 129
make_TFinfo_from_scanned_file () (in mod-
ule celloracle.motif _analysis), 131
makelog (class in celloracle.utility), 138
merged_score (celloracle.Links attribute), 117
merged_score (celloracle.network_analysis.Links at-
tribute), 132
module
celloracle, 117

154

Index

celloracle, Release 0.8.4

celloracle.data, 139
celloracle.data_conversion, 141
celloracle.go_analysis, 137
celloracle.motif_analysis, 128
celloracle.network_analysis, 132
celloracle.utility, 137

N

name (celloracle.Links attribute), 117
name (celloracle.network_analysis.Links attribute), 132
Net (class in celloracle), 120

O

object_initiation_date
tribute), 122
Oracle (class in celloracle), 123

P

palette (celloracle.Links attribute), 117
palette (celloracle.network_analysis.Links attribute),

(celloracle.Net at-

132

peak2fasta () (in module celloracle.motif_analysis),
131

peak_df (celloracle.motif_analysis.TFinfo attribute),
128

plot_cartography_scatter_per_cluster()
(celloracle.Links method), 118
plot_cartography_scatter_per_cluster()

(celloracle.network_analysis.Links ~ method),
133

plot_cartography_term() (celloracle.Links
method), 119

plot_cartography_term() (cellor-
acle.network_analysis.Links method), 133

plot_degree_distributions () (cellor-
acle.Links method), 119
plot_degree_distributions () (cellor-

acle.network_analysis.Links method), 134
plot_mc_results_as_kde () (celloracle.Oracle
method), 126

plot_mc_results_as_sankey () (cellor-
acle.Oracle method), 126
plot_mc_results_as_trajectory () (cellor-

acle.Oracle method), 127
plot_network_entropy_distributions()
(celloracle.Links method), 119
plot_network_entropy_distributions ()
(celloracle.network_analysis.Links ~ method),
134
plot_score_comparison_2D ()
method), 119
plot_score_comparison_2D () (cellor-
acle.network_analysis.Links method), 134

(celloracle.Links

plot_score_discributions () (celloracle.Links
method), 120

plot_score_discributions () (cellor-
acle.network_analysis.Links method), 134

plot_score_per_cluster () (celloracle.Links
method), 120

plot_score_per_cluster () (cellor-
acle.network_analysis.Links method), 135

plot_scores_as_rank () (celloracle.Links
method), 120

plot_scores_as_rank () (cellor-
acle.network_analysis.Links method), 135

plotCoefs () (celloracle.Net method), 123

prepare_markov_simulation ()
acle.Oracle method), 127

(cellor-

R

read_bed () (in module celloracle.motif _analysis), 131
ref_genome (celloracle.motif_analysis.TFinfo at-
tribute), 129

remove_zero_seq/() (in module cellor-
acle.motif_analysis), 132

reset_dictionary_and_df () (cellor-
acle.motif_analysis.TFinfo method), 129

reset_filtering() (cellor-
acle.motif_analysis.TFinfo method), 129

run_markov_chain_simulation () (cellor-
acle.Oracle method), 127

S

save_as_parquet () (cellor-

acle.motif_analysis.TFinfo method), 129
save_as_pickled_object () (in module cellor-
acle.utility), 138
scan () (celloracle.motif_analysis.TFinfo method), 129
scan_dna_for_motifs () (in module cellor-
acle.motif_analysis), 132
scanned_df (celloracle.motif _analysis.TFinfo at-
tribute), 129
set_R_path () (in module
acle.network_analysis), 136
seurat_object_to_anndata () (in module cellor-
acle.data_conversion), 141
simulate_shift () (celloracle.Oracle method), 127
standard () (in module celloracle.utility), 138
stats_dict (celloracle.Net attribute), 121
suggest_mass_thresholds () (celloracle.Oracle
method), 128
summarize_mc_results_by_cluster () (cellor-
acle.Oracle method), 128

cellor-

T

test_R_libraries_installation ()
ule celloracle), 128

(in mod-

Index

155

celloracle, Release 0.8.4

test_R_libraries_installation() (in mod-
ule celloracle.network_analysis), 136

TFinfo (celloracle.Net attribute), 121

TFinfo (class in celloracle.motif_analysis), 128

to_dataframe () (celloracle.motif analysis.TFinfo
method), 130

to_dictionary () (celloracle.motif_analysis.TFinfo
method), 130

to_hdf5 () (celloracle.Links method), 120

to_hdf5 () (celloracle.motif _analysis.TFinfo method),

130
to_hdf5 () (celloracle.Net method), 123
to_hdf5 () (celloracle.network_analysis.Links

method), 135
to_hdf5 () (celloracle.Oracle method), 128
transfer_all_colors_between_anndata ()
(in module celloracle.utility), 139
transfer_color_between_anndata () (in mod-
ule celloracle.utility), 139
transfer_scores_from links_to_adata()
(in module celloracle.network_analysis), 136

U

update_adata () (in module celloracle.utility), 139

updateLinkList () (celloracle.Net method), 123

updateTFinfo_dictionary () (celloracle.Net
method), 123

updateTFinfo_dictionary () (celloracle.Oracle
method), 128

156

Index

	News
	Contents
	Installation
	Tutorial
	API
	Changelog
	License
	Authors and citations
	Contact

	Indices and tables
	Python Module Index
	Index

